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ABSTRACT 
 

Aims: One major thing that promotes antimicrobial resistance among bacteria is their potential to 
produce enzymes and biofilms, which remain noteworthy elements in their pathogenicity. This study 
aimed to determine the prevalence of multidrug resistance Staphylococcus species isolated from 
different clinical samples. 
Study Design:  The study employed independent measures experimental study design. 
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Place and Duration of Study: Staphylococcus species originating from clinical samples were 
obtained from the microbiology laboratory of two teaching hospitals in Ogbomosho, Oyo State, 
between April and October, 2023. 
Methodology: Twenty-six (26) pre-identified (by the hospital Laboratories) Staphylococcus spp. 
were obtained from the microbiology laboratories of two teaching hospitals in Ogbomoso, Nigeria. 
The isolates were subjected to microscopic, and biochemical tests to confirm their identities. The 
testing for antibacterial susceptibility was carried out using the Kirky-Bauer disk diffusion technique. 
A modified crystal violet biofilm assay was used to determined the ability of the isolates to produce 
biofilm. Molecular characterization was carried out to identify bacteria with very high resistance to 
the used antibiotics using 16S rRNA. The isolates were subjected to enzyme production assay like 
pectinase, protease, keratinase, cellulose and collagenase assay. 
Results: All the Staphylococcus species in this study showed varied degrees of prevalence. All the 
clinical bacterial isolates also showed 100% resistance to Amoxicillin/Clavulanate, Cefuroxime, 
Cloxicillin Meropenem, and Doxycycline, while the slightest resistance was observed for Gentamicin 
with 29.17%. The multiple antibiotic resistance index (MARI) for all the isolates  was between 0.3 to 
1.0, which is higher than the safe limit of 0.2, with a high percent (95.8%) of the bacteria being MAR. 
The result shows that 77.8% of these isolates could produce one or more enzymes. 
Conclusion: The biofilm and enzyme production abilities of the clinical bacteria were major factors 
that led to expanded resistance, as observed in this study.  

 

 
Keywords: Staphylococcus; multidrug resistance; clinical samples; AMR; biofilm. 
 

1. INTRODUCTION 
 
Resistance to multiple antimicrobials is referred 
to as multidrug resistance (MDR), and various 
studies have shown that there are different 
resistance mechanisms in these bacteria, while 
their distribution and interaction are primarily 
complex and unknown. Resistance among 
bacteria can occur naturally through genetic 
mutation or if one species acquires resistance 
from another. However, extended use of 
antimicrobials encourages mutation selection, 
rendering antimicrobials ineffective (Amenu, 
2014). Antimicrobial resistance is induced by the 
overuse of antimicrobials, thus leading to 
microorganisms evolving a defense against 
drugs or certain strains of microbes developing a 
natural resistance to antimicrobials, which 
become prevailing than the ones that are easy to 
defeat with medication (Jiregna & Nesrie, 2017). 
 
Bacteria have the ability to acquire and transmit 
resistance to antimicrobial agents. Following the 
massive use of antibiotics in human treatments, 
bacteria have evolved several resistance 
mechanisms, including expression of the efflux 
pumps, target site modification, and metabolic 
inactivation, which contribute to drug resistance 
in multidrug-resistant bacteria (Shaik et al., 
2014). The role of coagulase-negative 
Staphylococci in causing antibiotic resistance 
infections has been shown in recent reports. 
Presently, some relevant clinical species such as 
Staphylococcus epidermidis, Staphylococcus 

heamolyticus, Staphylococcus saprophyticus 
and Staphylococcus lugdunensis have been 
reported (Franca et al., 2021).  
 
Staphylococcus aureus, a coagulase-positive 
bacterium, is known to cause many infections, 
even life-threatening diseases like bacteremia, 
endocarditis and necrotizing pneumonia. This is 
because of its virulence, which enables it to 
escape the immune system and cause severe 
harm to the host (Mahmood et al., 2021). Some 
Staphylococcus species live in normal microflora 
on human skin and mucous membranes, where 
they are associated with wound and urinary tract 
infections. Infectious diseases remain the 
leading mortality and morbidity cause around the 
world, especially in developing countries.  
 
Biofilm production plays a vital role in the 
virulence of Staphylococcus species by allowing 
the cells to persist in the human body and evade 
the host immune defense system (Szczuka et 
al., 2016). Some Staphylococcus species form 
biofilms on or around medical equipment, such 
as central venous catheters and prosthetic heart 
valves (Giampero et al., 2022). Biofilm protects 
bacteria from the effect of antibiotics; low 
metabolic activity of bacteria in biofilm lowers the 
uptake of antibiotics, making them develop a 
high level of antibiotic resistance and increased 
pathogenicity. Staphylococcus species produce 
enzymes such as cellulases, pectinases, 
protease, collagenase, and keratinase, which, 
once on the surface, interact with host 
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components like fibronectin and plasminogen to 
trigger signal transduction and thereby enable 
the pathogens to colonize, persist and invade 
the host tissue (Berne et al., 2015).  
 
Enzymes facilitate the penetration spread of the 
pathogen in the host and cause the collapse and 
disintegration of the cellular structure, thereby 
aiding the pathogen in the production of disease 
(Pirvanescu et al., 2014). These enzymes 
convert fibrinogen into fibrin, which forms the 
threads of a blood clot and contributes to its 
pathogenicity (John et al., 2018). Lipases are 
crucial in lipid metabolism, which includes 
digestion, transport, and the processing of 
dietary lipids. Lipase activity is required for the 
colonization and persistence of bacterial 
pathogens like Staphylococcus epidermidis on 
human skin, the lipases of S. aureus have been 
shown to interfere with the host cell immune 
response (Jaeger et al., 1994). Collagenase 
breaks down the peptide bond in collagen and 
assists in destroying extracellular structures, 
thereby encouraging the spread of infection and 
pathogenesis (Gerald et al., 2007). This study 
aimed to find out the predominance of multidrug 
resistance Staphylococcus species isolated from 
clinical samples. 
 

2. MATERIALS AND METHODS 
 

2.1 Isolates 
 
Staphylococcus species of clinical samples 
origin were obtained from the microbiology 
laboratory of two teaching hospitals in 
Ogbomosho, Oyo State, between April and 
October, 2023. The clinical origins of the isolates 
were of diverse sites, as reported by the 
laboratory. The bacteria were obtained as pure 
culture and were already identified by the 
hospital microbiology laboratories. These were 
collected on sterile nutrient agar slants and then 
transported to the microbiology laboratory of the 
Department of Pure and Applied Biology, 
LAUTECH, Ogbomoso, for further study. 
 

2.2 Identification of the Clinical Isolates 
 
The obtained bacterial isolates were earlier 
identified by the source hospital microbiology 
laboratory, but they were subjected to 
microscopic and some biochemical 
characteristics according to standard 
conventional procedures (Bergey’s Manual, 
2000), to ascertain their identity. These include 
microscopic, colonial and biochemical tests. 

2.3 Antibiotic Susceptibility Testing 
 

The antimicrobial susceptibility test of the 
bacteria was determined using the Kirby-Bauer 
disk diffusion method on Muller Hinton Agar 
(MHA) plates (Patel et al., 2017). Standardized 
inoculums were swabbed on the prepared MHA 
plates, and antibiotic disks were aseptically 
placed on the swabbed plates. Antibiotics used 
(CM-12-8PR100, product of Rapid Labs, UK) 
include Ceftazidime (30µg), Cefuroxime (30µg), 
Ceftriaxone (30µg), Gentamicin (10µg), 
Erythromycin (5µg), Cloxacillin (5µg), Ofloxacin 
(5µg), and Amoxicillin/Clavulanate (30µg). 
Bacterial isolates that showed 75% to the first 
eight (8) antibiotics used were further subjected 
to another four antibiotics namely; Meropenem 
(10µg), Doxycycline (30µg), Imipenem (10µg), 
Levofloxacin (5µg), products of BIO RAD 
(California, USA). The plates were incubated at 
37°C overnight. Zones of inhibition were 
measured to determine susceptibility patterns, 
and results were compared with the Clinical and 
Laboratory Standard Institute (CLSI, 2018). 
 

The multiple antibiotic resistance index (MARI) 
was calculated as: 
 

MAR Index = 
𝑎

𝑏
                                            (i) 

 

Where a is the number of antibiotics an isolate is 
resistant to, and b is the total number of 
antibiotics used in the study. 
 

2.4 Biofilm Production Ability of the 
Bacterial Isolates 

 

The bacterial isolates were assessed on their 
ability to produce biofilm, using a modified 
crystal violet assay according to a method 
described by Shukla et al. (2017). Bacteria were 
grown in nutrient broth (NB) overnight and 
diluted at a ratio 1:10 with fresh sterile NB in 
microtiter plates, then incubated for 48 hours at 
37ᵒC (Amao et al., 2019). The microtiter plates 
were turned over, washed and then, 0.01% of 
crystal violet solution was introduced. The plates 
were washed and vigorously blotted after 15 
minutes incubation and then allowed to dry 
overnight. The quantification of the formed 
biofilms was performed at 492 nm on a HALO 
MPR-96 visible microplate reader after adding 
125µL of 30% acetic acid solution, followed by 
incubation at room temperature for 15 mins. 
Results were interpreted as weak, moderate, 
and strong biofilm formers groups, according to 
Singh (2017). 
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2.5 Molecular Characterization of Isolates 
 
Molecular characterization based on 16S rRNA 
was carried out on the isolates that showed 
greater than 75% resistance to the second set of 
antibiotics used, with the primer pair 27F 
(AGAGTTTGATCMTGGCTCAG) and 1525R 
(AAGGAGGTGWTCCARCCGCA). Assembled 
nucleotide sequences were analyzed for 
similarities on the National Centre for 
Biotechnology Information site (NCBI) using the 
BLASTN tool. The information was used for 
phylogenetic analysis on MEGA X (USA), and 
the data were submitted to the NCBI data bank. 
 

2.6 Determination of Enzyme Production 
Abilities of Bacterial Isolates 

 
2.6.1 Pectinase activity assay 
 
Assay for pectinase activity was carried out for 
the bacteria using the method of Kavuthodi et al. 
(2015). Clearance zone on agar plates were 
determined and recorded as positive results.  
 
2.6.2 Protease activity assay 
 
Casein agar medium was prepared as described 
by Larone (1993). The bacteria isolates were 
inoculated on casein agar plates and incubated 
overnight at 37ᵒ C. A clear zone indicates a 
positive test result. 
 
2.6.3 Keratinase activity assay 
 
The assay for keratinase was carried out 
according to the method described by Alwakeel 
et al. (2021). The halo zones were measured 
and recorded as an indicator of keratinase 
activity, with the presence of a zone confirming a 
positive result. 
 
2.6.4 Cellulase activity assay 
 
This assay was done to determine the ability of 
bacteria isolates to break down cellulose, 
employing the method of Miller (1959). The halo 
zones were measured and recorded as an 
indicator of keratinase activity, with the presence 
of a zone confirming a positive result. 
 
2.6.5 Collagenase assay 
 
Production medium for collagenase contained in 
500 ml distilled water includes gelatin- 10 g: 
NaCl-0.05 g, H2PO4; 0.25 g, Mg SO4- 0.1 g, 
Peptone- 2.5 g, Agar- 8 g. The production 

medium was sterilized, and 20 ml of each was 
dispensed into the petri dish and allowed to 
solidify. Overnight pure culture of 0.5 ml was 
inoculated into the collagenase medium and 
incubated at 37 ºC; the clearance zone was 
taken as a positive test. The wider the zone, the 
higher the potential to produce collagenase 
enzyme. 
 

2.7 Statistical Analyses 
 
Data analyses were based on the average of 
three replicates from independent studies. 
Statistical analyses of these averages were 
analyzed using One-way analysis of variance 
(ANOVA) in SPSS version 20 software at a 95% 
significance level. 
 

3. RESULTS AND DISCUSSION 
 
The confirmatory test for collected bacterial 
isolates showed that 24 (92%) of the 26 isolates 
were Gram positive as reported by the hospital 
laboratories, while 2 (8%) showed different Gram 
reaction status (Table 1). Table 2 shows the 
results of antibacterial susceptibility testing of 
bacterial isolates to selected antibiotics. 
Staphylococcus species resisted Amoxicillin/ 
Clavulanate, Cloxacillin, Cefuroxime (100% 
resistance), and Ceftazidime (92%). In this 
study, the vast majority of the bacterial isolates 
showed a multidrug resistance pattern, which is 
similar to the study conducted by Ehssan et al. 
(2022), who reported 89.2% resistance. Omaba 
et al. (2021) reported that Ofloxacin and 
Gentamicin displayed high percentage of 
sensitivity against the Staphylococus isolates in 
their study. Our result was different from that of 
Ong'era et al. (2023) and Onyeka et al. (2021), 
who also reported 100% resistance among 
Staphylococcus species to Ceftazidime. The 
differences in resistance profile may be due to 
differences in infection epidemiology, 
prescription patterns, and the population's socio-
demographic features (Kim et al., 2015). 
 
All the bacterial isolates were most sensitive to 
Gentamicin (70%) and least sensitive to 
Ofloxacin (54%). The antibiotic susceptibility 
profile results for the bacteria showed >75% 
resistance, as represented in Table 3. Many 
studies have shown that Meropenem has greater 
efficacy than Imipenem (Ahmed Hunjra et al., 
2022). However, other researchers have shown 
different findings with this antibiotics, a 
resistance of 62.5% was reported from Nepal 
(Parajuli et al., 2017), 79.3% from Vietnam (Tran 
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et al., 2017), and 69.68% from Mexico (Andres 
et al., 2019). These bacterial isolates have a 
high resistance rate to the standard antibiotics 
used singly or combined. 
 
The findings on Imipenem and Meropenem are 
disturbing since they are the last line of drugs 
used in the treatment of infections caused by 
multidrug-resistant bacteria. Imipenem-resistant 
strains are always resistant to other antimicrobial 
drugs, and the outcome of their resistance 
appears worse in the area of mortality and 
morbidity (Reissier et al., 2023, WARNING, 
2023). The total resistance of the 
Staphylococcus species was observed for 
Meropenem and Doxycycline, followed by 
imipenem (94%) and Levofloxacin (6 3%). Table 
4 summarizes the sensitivity of the bacterial 
isolates to different antibiotics. Fig. 1 shows the 
resistance pattern of the Staphylococcus species 
to the different antibiotics used in this study; 

100% resistance was observed for 
Amoxicillin/Clavulanate, Cloxacillin, Cefuroxime, 
Meropenem, and Doxycycline. Most bacteria 
were resistant to four or five different antibiotics, 
proving them to be multidrug-resistant (Table 5). 
The multiple antibiotic resistance index (MARI) 
for all bacteria ranges from 0.3 to 1.0, higher 
than the acceptable limit of 0.2 (Table 5). The 
antibiotic resistance index for all the bacterial 
isolates is high, ranging from 0.3 to 1.0 and 
higher than the recommended safe limit of 0.2. 
Ibanga et al. (2019) reported that the MAR 
indices of their study showed that 85.7% of the 
isolates had confirmed multi-drug resistance 
status, with 60.7% of the isolates showing 
resistance to between four or more of the tested 
antimicrobials. The reason for resistance                
to these carbapenems may result from 
carbapenemase enzymes, which are clinically 
important because of their ability to hydrolyze all 
or most of the beta-lactam drugs. 

 

Table 1. Biochemical Tests of all obtained Staphylococcus Isolates 
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A1  + + - - - + + + 
A2 + + - + + - + + 
A3  + + - - + + + + 
A4  + + - - - + + + 
A5  + + - - - + + + 
B3   + + - + - - + + 
B5  + + - - + + + + 
B9  + + - - - + + + 
B12  + + - + + + + + 
B14  + + - - + + + + 
C2  + + - - + + - + 
C3   + + - - + + - + 
C4  + + - - + + - + 
C5   + + - - - - - + 
C8  + + - - - + + + 
C10  + + - + - + + + 
C11  + + - - + + + + 
C16   + + - - + + + + 
A14 + + - - + + + + 
A15 + + - - + + + + 
A16 + + - - + + + + 
B16 + + - - + + + + 
B17 + + - - + + - + 
A13 + + - - + + + + 
C6 - + - - - - + + 
C7 - + - - + - + - 

Key: Positive (+); Negative (-) 
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Table 2. Antibiotic Susceptibility Test Staphylococcus Isolates 

 

Isolate AUG CAZ CRX GEN CTR OFL ERY CXC % Resistance 

B9 R R R S R R R R 87.5 

C10 R R R R R S R R 87.5 

C2 R R R S R R R R 87.5 

B16 R R R R R R R R 100 

B14 R R R S R R R R 87.5 

C11 R R R S R S R R 75 

A15 R I R S S R R R 62.5 

A5 R R R S R S I R 62.5 

B17 R R R S R S I R 62.5 

C4 R R R S S S R R 62.5 

B3 R I R R S R R R 75 

A1 R R R S R I I R 62.5 

C16 R R R S R R R R 87.5 

A2 R R R S R S R R 75 

A3 R R R S R S R R 75 

A14 R R R S R S I R 62.5 

B5 R R R S R S R R 75 

A4 R R R S R S S R 62 5 

C5 R R R R R R R R 100 

C8 R R R R R R R R 100 

B12 R R R S R R R R 87.5 

A16 R R R R R R R R 100 

A13 R R R S R S S R 62.5 

C3 R R R R R S R R 87.5 

% of Resistance 100 91.67 100 29.17 87.5 45.83 75 100  
KEYS: AUG: Amoxicillin/ Clavulanate (30µg), CAZ: Ceftazidime (30µg); CRX:Cefuroxime (30µg ); GEN: 

Gentamicin (10µg ); CTR : Ceftriazone (30µg); OFL: Ofloxacin (5µg); ERY:Erythromycin (5µg); CXC: Cloxicillin 
(5µg ) R:Resistance; S: Sensitive; I:Intermediate 

 
Table 3. Antibiotic Susceptibility Test for Staphylococcus Isolates with Resistance >75% 

 

Isolate MERO DOXY IMI LEVO % Resistance 

B14 R R R R 100 

B16 R R I R 75 

B9 R R R R 100 

CI6 R R R R 100 

B5 R R R S 75 

B3 R R R R 100 

A3 R R R R 100 

C1 R R R S 75 

C10 R R R R 100 

C5 R R R R 100 

C2 R R R S 75 

A16 R R R S 75 

B12 R R R R 100 

A2 R R R R 100 

C3 R R R S 75 

C8  R R R S 75 
Key: MERO: Meropenem (10µg); DOXY: Doxycycline (30µg); IMI: Imipenem (10µg); LEVO: Levofloxacin (5µg); 

R: Resistance; S: Sensitive; I: Intermediate 
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Table 4. Summary of the Sensitivity Pattern of Staphylococcus Isolates to different Antibiotics 

 

Antibiotics Sensitive Intermediate Resistance 

Ceftazidime 0 2 (8%) 22 (92%) 

Cefuroxime 0 0 24 (100%) 

Gentamicin 17 (71%) 0 7 (29%) 

Ceftirazone 3 (12%) 0 21 (88%) 

Erythromycin 2 (8%) 4 (17%) 18 (75%) 

Cloxicillin 0 0 24 (100%) 

Ofloxacin  12 (50%) 1 (4%) 11 (46%) 

Amoxicillin/ Clavulanate 0 0 24 (100%) 

Meropenem 0 0 16 (100%) 

Doxycycline 

Imipenem 

0 

0 

0 

1 (6%) 

16 (100%) 

15 (94%) 

Levofloxacin 6 (37%) 0 10 (63%) 

 

Table 5. Antibiotypes of selected antibiotics on Staphylococcus isolates and their multiple 
antibiotic resistance index 
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A1 Aug-Caz-Crx-Ctr-Ery-Cxc 0.5 MDR 

A2 Aug-Caz-Crx-Ctr-Ery-Cxc-Mero-Doxy-Imi-levo 0.8 MDR 

A3 Aug-Caz-Crx-Ctr-Ery-Cxc Mero-Doxy-Imi-levo 0.8 MDR 

A4 Aug-Caz-Crx-Ctr-Ery-Cxc 0.5 MDR 

A5 Aug-Caz-Crx-Ctr-Ery-Cxc 0.5 MDR 

A14 Aug-Caz-Crx-Ctr-Cxc 0.4 MDR 

A13 Aug-Caz-Crx-Ctr-Cxc 0.4 MDR 

A15 Aug-Crx-Ctr-Ery-Cxc 0.4 MDR 

A16 Aug-Caz-Crx-Gen-Ctr-Ofl-Ery-Cxc-Mero-Doxy-levo 0.9 MDR 

B3 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-levo 0.8 MDR 

B5 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-levo 0.8 MDR 

B9 Aug-Cax-Crx-Ctr-Ofl-Ery-Cxc-Mero-Doxy-Levo 0.8 MDR 

B12 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-levo 0.8 MDR 

B14 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-levo 0.8 MDR 

B16 Aug-Caz-Crx-Gen-Ctr-Ofl-Ery-Cxc-Mero-Doxy-levo 0.9 MDR 

B17 Aug-Caz-Crx-Ery-Cxc 0.4 MDR 

C2 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-levo 0.8 MDR 

C3 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-levo 0.8 MDR 

C4 Aug-Caz-Crx-Ctr-Ery-Cxc 0.5 MDR 

C5 Aug-Caz-Crx-Gen-Ctr-Ofl-Ery-Cxc- Mero-Doxy-Imi-levo 1.0 MDR 

C8 Aug-Caz-Crx-Ctr-Ery-Cxc 0.5 MDR 

C10 Aug-Caz-Crx-Ctr-Ery-Cxc Mero-Doxy-Imi-Levo 0.8 MDR 

C11 Aug-Caz-Crx-Ctr-Ery-Cxc- Mero-Doxy-Imi-Levo 0.8 MDR 

C16 Aug-Caz-Crx-Ctr-Ery-Cxc-Mero-Doxy-Imi-Levo 0.8 MDR 
KEYS: AUG: Amoxicillin/Clavulanate (30 µg); CAZ: Ceftazidime (30 µg); CRX: Cefuroxime (30 µg); GEN: 

Gentamicin (10µg); CTR: Ceftriazone (30µg); OFL: Ofloxacin (5 µg); ERY: Erythromycin (5 µg); CXC: Cloxicillin 
(5 µg); MERO: Meropenem (10 µg); DOXY: Doxycycline (30 µg); IMI: Imipenem (10 µg); LEVO: Levofloxacin (5 

µg); AMP: Ampicillin (10 µg), NIT: Ntrofurantoin( 30 µg); CPR: Cprofloxacin (5µg); MARI: Multi-Antibiotic 
Resistance Index, MDR: Multidrug resistant. 
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Fig. 1. Percentage of the Resistance Pattern of Staphylococcus Isolates to different Antibiotics 
 

Table 6. Biofilm Production ability of Isolated Bacteria 
 

Isolate Mean Biofilm Former Group 

C11 0.064±0.01 Non biofilm producer 
C16 0.061±0.11    Non biofilm producer 
A15 0.061±0.03 Non biofilm producer 
B3  0.061±0.01 Non biofilm producer 
B5  0.060±0.01 Non biofilm producer 
C4 0.070±0.01 Non biofilm producer 
A3 0.081±0.04 Weak biofilm former 
A4 0.094±0.02 Weak biofilm former 
B12 0.097±0.03   Weak biofilm former 
B14 0.078±0.04 Weak biofilm former 
C3 0.081±0.02 Weak biofilm former 
A1 0.119±0.03 Moderate biofilm former 
A2 0.123±0.01 Moderate biofilm former 
A5 0.103±0.04 Moderate biofilm former 
A13 0.126±0.02 Moderate biofilm former 
A14 0.120±0.01 Moderate biofilm former 
A16 0.151±0.03 Moderate biofilm former 
B9  0.117±0.01 Moderate biofilm former 
B16 0.119±0.04 Moderate biofilm former 
B17 0.103±0.04 Moderate biofilm former 
C2  0.121±0.03 Moderate biofilm former 
C5  0.119±0.02 Moderate biofilm former 
C7 0.117±0.02 Moderate biofilm former 
C10 0.119±0.02 Moderate biofilm former 

Key: Value = mean ± Standard deviation. 

 
The isolates' ability to produce biofilm is 
presented in Table 6. Thirteen (13) isolates 
(54.2%) were moderate biofilm producers, five 
isolates (20.8%) were weak biofilm formers, and 
six isolates, representing 25%, were non-biofilm 
former. The production of biofilms by (75%) of 

these bacteria might have aided their multiple 
antibiotic tolerance mechanisms like 
impermeability, rapid growth and influence drug 
resistance (Liu et al., 2024). Biofilm                
production supports gene transfer among 
microorganisms through their various connection 
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channels, thereby increasing antibiotic 
resistance (Bowler et al., 2020). The mutation 
also facilitates adjacent microcolonies in a 
biofilm, taking up free DNA and making the 
biofilms more antibiotic-resistant (Usui et al., 

2023). Bacteria in biofilms produce               
potential virulence factors to prolong                    
infections to a more chronic disease state 
(Cohen et al., 2022) by suppressing immune 
responses. 

 
Table 7. Selected Staphylococcus Isolates with their Accession Number 

 

Isolate Code Isolate Identity Accession Number 

B14 Staphylococcus haemolyticus OR367738 
C16 Staphylococcus xylosus OR367735 
A3 Staphylococcus epidermidis OR367734 
C10 Staphylococcus aureus  OR367732 
C5 Staphylococcus warneri OR367730 
B9 Staphylococcus aureus OR367729 
B12 Staphylococcus haemolyticus OR367728 
A2 Staphylococcus aureus OR367727 
B3 Staphylococcus aureus OR367726 
C2 Staphylococcus aureus PQ643445 

 

 
 

Fig. 2. Phylogenetic relationship of selected Staphylococcus isolates 
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Table 8. Enzyme Assay for Selected Bacteria Isolates 
 

Isolate 
Code 

Accession 
Number 

Pectinase Protease Keratinase Cellulase Collagenase 

A2  OR367727 + - - + - 
B9 OR367729 - - - - + 
B12 OR367728 - - - - - 
C10 OR367732 + - + - - 
B3  OR367726 - - - + + 
C16 OR367735 + - - + + 
C5  OR367730 - - + - - 
B14 OR367738 - - - - - 
A3 OR367734 + - + + - 
C2 PQ643445 - - - - - 

KEY: + = Positive reaction; - = Negative reaction 

 
The phylogenetic relatedness of the selected 
bacterial isolates, identifying the closest identity 
for each of the isolates, is presented in Fig. 2. 
Staphylococcus species in this study showed 
similarity with Staphylococcus species from the 
gene bank database. The accession numbers of 
the isolates submitted to the Gene bank were 
presented in Table 7. The result shows that 
77.8% of these isolates could produce one or 
more enzymes, while 22.2% of bacterial isolates 
proved otherwise (Table 8). Many of these 
bacteria isolates (77.8%) have the potential to 
produce one or more enzymes, which make 
them metabolically active, possibly influencing 
their colonization of infection sites, pathogenicity 
and resistance to antimicrobial agents (Reissier 
et al., 2023). 
 

4. CONCLUSION 
 
Resistance to the carbapenems class of 
antibiotics by multidrug-resistant clinical isolates 
is a growing concern in healthcare. 
Staphylococcus species are a major rising threat 
to public health and modern medicine due to 
their vast resistance to multiple antibiotics. Most 
of the bacteria collected from different clinical 
site samples in the two teaching Hospitals from 
Ogbomoso showed multiple resistance to all the 
antibiotics tested. The production of certain 
enzymes and biofilm formation by these 
microorganisms are essential factors that 
enhance their virulence, hence leading to 
multiple drug resistance. At times, errors from 
the Hospital laboratory scientists may occur in 
the area of bacteria identification, which affects 
antimicrobial stewardship and may contribute to 
multidrug resistance. There is need to employ 
real-time bacterial identification like real-time 
PCR and digital inline holography methods 
among others, in the Nigerian health care 

system for real-time identification and reduced 
error. 
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