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Abstract 
 

Tanzania has been taking various measures to drop the Under-Five Mortality Rate (UFMR), but the pace to 

meet national and global UFMR targets has been slow. Nevertheless, the decline for the past years has 

continued to be low as compared to the Sustainable Development Goals (SDGs) target which is set at 25 
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deaths/1000 live births by 2030. The lack of statistical modeling-based forecast values of UFMR results into 

setting targets that are not SMART towards the realization of national and international goals of the health 

sector. Thus, the current study uses both ARFIMA and ARIMA to make forecasts of UFMR in Tanzania 

from 2021 to 2030 by using data extracted from the World Databank - World Development Indicators (WDI). 

Also, an accuracy comparison between the ARFIMA and ARIMA best-fit models in forecasting UFMR was 

conducted. The forecasts from the best ARFIMA (1, 0.284243, 2) model indicate that by June 2026 the rate 

will on average be 41 deaths/1,000 live births as compared to the Tanzanian Five Year Development Plan 

Phase III (TFYDP-III) target of 40 deaths/1,000 live births; whereas the best fit ARIMA (1, 2, 0) model 

forecasts depict that the rate will be 40.1 deaths/1,000 live births as compared to the TFYDP-III target. In 

relation to the UN SDGs target of 25 deaths/1,000 live births by 2030, the ARFIMA (1, 0.284243, 2) model 

forecast values indicate that by 2030, Tanzania will experience a decrease in UFMR to 35.2 deaths/1,000 live 

births. The ARIMA (1, 2, 0) forecast values indicate that by 2030, Tanzania will experience a decrease in 

UFMR to 32.9 deaths/1,000 live births. The results of using RMSE and MAPE forecasting model accuracy 

measures reveal that the ARFIMA (1, 0.284243, 2) model performs better than ARIMA (1, 2, 0) in 

forecasting UFMR.  

 

 

Keywords: Forecasting; mortality rate; integrated moving average; Autoregressive; ARFIMA; public health. 

 

1 Introduction  
 

The Under Five Mortality Rate (UFMR) is the most common indicator of health sector performance as well as a 

basis for formulating public health policies and frameworks. In addition to monitoring the deaths of children 

under five resulting from various causes, UFMR can also reflect other social conditions such as unequal access 

to health care (Lutambi et al., 2010; Dlamini et al., 2024; Zhang et al., 2023; Mwanga et al., 2024). 

 

All countries are concentrating on lowering the UFMR to 25 deaths/1,000 live births by 2030 to achieve SDG 

3.2.1, which calls for the eradication of all cases of preventable deaths of children under the age of 5. According 

to the SDGs, 2020 report, 125 countries worldwide have already achieved the SDG objective, and 16 more are 

expected to do so if the present trend continues. If not, 54 countries will need to step up their efforts if they want 

to avoid not meeting the target by 2030 given the current trends. Without accounting for the additional 

challenges brought on by the COVID-19 pandemic, 25 of these nations will need to triple their current rate of 

UFMR reduction Shulla & Leal-Filho, 2023). According to the Martín-Blanco (2022), the 54 off-track countries 

will reduce the number of children under five by 8 million between 2021 and 2030, bringing the overall number 

of children under five to 2.5 million by that time. Deliberate efforts are still required in sub-Saharan Africa and 

southern Asia to drop UFMR through the engagement of various health interventions. In 2020, the UFMR for 

sub-Saharan Africa stood at 74 deaths/1,000 live births, and to achieve the SDGs target of 25 deaths/1,000 live 

births by 2030, the rate must go down by 66%, which is equivalent to a 6% decrease per year. 

 

According to the 2021 UNICEF Infant Mortality Report, UFMR worldwide has declined from 93 deaths/1000 

live births in 1990 to 37 deaths/1,000 live births in 2020 and to achieve the target of SDG of 25 deaths/1,000 

live births by 2030, the rate has to drop by 33%, which is equivalent to 3% decline annually (Salman & Aboudi, 

2022). Table 1 shows that in 2020, UFMR in the region experienced 74 deaths/1,000 live births. This rate was 

14 times the risk of children in Europe and North America and 19 times that of Australia. The UFMR for 

children born in low-income countries in 2020 was 66 deaths/1,000 live births one times higher at risk than 

children born in middle-income countries, while for higher-income countries UFMR was 5 deaths/1,000 live 

births. At the national level, UFMR in 2020 extended from 2 to 115 deaths/1,000 live births, with a child born 

within the highest-mortality nation suffering a 65-fold higher chance of a child passing away than a child born 

within the lowest-mortality nation  (Ahinkorah, 2021 UNICEF, 2024). 

 

The WHO (2022) report has highlighted that the driving causes of death in children aged below 5 are pre-

mature birth complications, birth asphyxia/trauma, pneumonia, runs, and intestinal sickness, all of which can be 

avoided or treated with rational medication and health interventions. In responding to the problem, the WHO 

calls on all nations to improve the social wellbeing to all children so that they can access fundamental health 

services at minimum cost. Moreover, multisectoral endeavors are required to overcome imbalances and any 

negative impacts from social well-being determinants. 
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Apart from implementing the global health performance indicators, the United Republic of Tanzania (URT) has 

been setting targets for all health performance indicators including UFMR in its Five Years-Based Development 

Plans. For example, the implementation report of the Second Phase Five Year Development Plan II (FYDP II), 

shows that UFMR declined from 67 per 1,000 live births in the Financial Year 2015/16 to 48.9 deaths/1,000 

live births in the Financial Year 2019/20.  The implication of this rate in relation to SDGs is that, to achieve the 

target of 25 deaths/1,000 live births by 2030, the rate of UFMR has to go down by 49%, which is equivalent to 

4% decrease annually. Moreover, the Third Phase Five-Year Development Plan 2021/22 – 2025/26 (FYDP III 

2021/22 – 2025/26) has earmarked UFMR as one of the seven Key Indicators (KI) of the public health sector 

performance in Tanzania. Table 2 indicates the performance of each indicator as of June 2020 and the 

anticipated target by June 2026 (MoFP, 2021). Furthermore, the Tanzania Mortality and Health Monograph of 

the 2012 Census, indicates that the overall UFMR stood at 66 deaths/1,000 live births and the mortality level for 

male children under five years of age stood at 73 deaths/1,000 live births and for females was 60 deaths/1,000 

live births (NBS, 2015; Mgwadu, 2019). 

 

Currently, the URT has been setting targets for health sector indicators including UFMR basing on available 

baseline data and interventions such as improved vaccinations, training more health care attendants and 

increasing the number of health centers all over the country. However, the current targets for health indicators 

including UFMR are not derived from statistical modeling and forecasting, therefore they lack statistical 

jurisdiction for planning and policy formulation in the health sector. In ensuring that the national and world 

targets are SMART, decent forecasts of health performance indicators including UFMR are needed. Due to that 

fact, this study deliberately intended to develop the best fit Autoregressive Fractionally Integrated Moving 

Average (ARFIMA) and Autoregressive Integrated Moving Average (ARIMA) models for forecasting UFMR 

in Tanzania and compare the forecasting accuracy between the two models (Wiri et al., 2022). The selection of 

the model is based on the fact that ARFIMA deals with both short and long-range memory time series data, 

while ARIMA deals with short-range memory only. 

 

2 Material and Methods  
 

2.1 Location of the study 
 

The study is based in the United Republic of Tanzania which includes all 26 regions of Tanzania main land and 

Zanzibar. 

 

2.2 Research design  
 

Time Series Analysis (TSA) is a method reasonable for longitudinal designs of research. They contract with 

single subjects or units that are measured more than once at a standard interval of time (Ensor, 2002). Hence, 

the study utilizes longitudinal design since it is working with a big number of data points (61 data points of 

UFMR from 1960 to 2020 (Creswell, 2014). 

 

2.3 Source of data 
 

Secondary data from 1960 to 2020 (61 data points) extracted from the World Databank - World Development 

Indicators (WDI) via link https://data.worldbank.org/indicator/SH.DNY.MORT?loacations=TZ and was used in 

the study. The World Databank is a reliable open source of data and other researchers like Eke & Ewere (2020a) 

used data from the source in modeling and forecasting UFMR in Nigeria using 59 UFMR data points (from 

1960 to 2018) by employing the ARIMA model. 

 

2.4 Data analysis plan 
 

Thus, the entire data analysis process is facilitated by R Software (Version 4.2.1) commands from ARFIMA 

and ARIMA packages. The UFMR dataset is disintegrated into two portions, whereby the first 51 (1960 to 

2010) data points were used in the course of ARFIMA and ARIMA models development and the last 10 (2011 

to 2020) data points were used for checking the forecasting accuracy of the best-fit models. 

 

 



 
 

 

 
Mwijalilege et al.; Asian J. Prob. Stat., vol. 27, no. 1, pp. 107-121, 2025; Article no.AJPAS.129255 

 

 

 
110 

 

The ARFIMA model is derived as follows: 

 

If t
X  is a stationary time series with zero mean and with long-range dependence, then the mathematical model 

for ARFIMA (p, d, q) is given by: 
 

( )
1 1

1 1 1

p q
di i

i t i t

i i

C C X C 
= =

   
−  − = +   

   
 

                                                                                       
(1)

 
 

Whereby C = backshift operator, d = differencing parameter, ( )1
d

C− = difference operator, i
  = Autoregressive 

(AR) parameters, i
  = Moving Average (MA) parameters, 1

1

p

i

i

i
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=

 
−  

 
  = AR polynomial of order p and 1

1

q

i

i

i

C
=

 
+ 

 


 = 

MA polynomial of order q. 
 

However, on expansion, the ARFIMA (p, d, q) can be generalized by the following mathematical equation: 
 

( ) ( ) ( )1
d

t t
C C X C  − =

                                                                                                          
(2)

 
 

In the course of developing the ARFIMA (p, d, q) models, the following sub-tasks are carried out: 
 

a) Testing for long-memory dependency existence in the UFRM data 
 

Samimi (2009) Peiris & Hunt (2023). emphasize several procedures that have been established for testing the 

existence of long memory in the time series data. But for the purpose of this study, Rescaled Range Analysis 

(R/S) and ACF Plots were used for LMD in the data.  
 

i) Rescaled range analysis method 
 

Rescaled Range Analysis aims at examining the existence of autocorrelations in time series (Samimi, 2009; Yin 

et al., 2009). The theory behind R/S analysis is to study the behaviour of the rescaled cumulative deviations 

from the mean. The statistic for R/S is computed using the following formula: 
 

                                                            

(3)

 
 

Whereby  stands for ranges of accumulated deviations of a series over a period of length and  is the 

grand mean of the series. 
 

We know that the ordinary standard deviation estimator is given by: 
 

                                                                                                                          
(4)

 
 

If the sample size enlarges and on simplicity, the following relationship is produced: 
 

                                                                                                                 
(5)

 
 

From the above equation (3.3), it is obvious that the estimate of H, which is a gradient, gives the mean values 

of sample groups of the same size to the number of observations within each sample group. 
 

The Hurst Exponent Statistics for UFMR data are executed by R software using the function “hurstexp ()” and 

the interpretation of results is based on theoretical Hurst Exponent Statistic. 
 

ii) ACF plots method 
 

When a time series is non-stationary with ACF Plots decreasing not exponentially and gradually, such kind of 

series is termed a long memory series (Al-Gounmeein & Ismail, 2021; Peiris & Hunt, 2023; Xiang & Zhou, 
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2023). In this study, the ACF plots of the original UFMR data were plotted by using “acf ()” function in R 

software and visualized whether there was a declining trend in UFMR.  
 

b) Checking for stationarity of UFMR data 
 

A time series is said to be stationary if the mean, variability, and covariance between two time periods depend 

solely on the interval between the two time periods and on the time at which the covariance is computed 

(Gujarati & Poter, 2009; Shrestha & Bhatta, 2018)). In this study, the stationarity of UFMR data was studied by 

Time Plots; ACF, and PACF Plots; and verified by the commonly used Unit Root test known as the Augmented 

Dickey-Fuller (ADF) test.  
 

i) Time plots and ACF plots 
 

A time plot is the most used graphical method whereby the data points are plotted over time. It directly reveals 

any trends over time, any regular seasonal behavior, and other systematic features of the data. All these need to 

be identified so that they can be incorporated into statistical modeling. 
 

On the other hand, a plot of the ACF is a standard tool in exploring a time series before modeling and 

forecasting and it offers a useful check for seasonality, cycles, and other time series shapes by examining the 

autocorrelations of the series with itself, lagged one period, two periods, and so forth. In this regard, the study 

used time plots and ACF plots as primary tools in examining the stationarity in the UFMR data. 
 

ii) ADF Test 
 

The stationarity of UFMR data for both general and sex-wise was checked by ADF test with the following 

hypotheses: 
 

Ho: The UFMR data are non-stationary (unit root exists), versus 

H1: The UFMR data are stationary (unit root does not exist) 
 

The decision rule is that, if the computed p-value is greater than 0.05 level of significance, then we fail to reject 

the null hypothesis, hence concluding that the UFMR data is non-stationary and vice-versa. 
 

c) Estimating Fractional Differencing Parameter (d) 
 

A time series is considered to have long-range memory or dependence if the differencing parameter (d) lies in 

the range of 0.5 0.5d−    whereby if 0 0.5d  then the series is stationary and the autocorrelations are 

positive and hyperbolically dropping to zero, implying existence of long memory; 0.5 1d   for a non-

stationary time series; and if 0.5 0d−   (when d is negative) the process is said to be anti-persistent or has 

intermediate memory (Ensor, 2002). 
 

During the study, the differencing parameters (d) were estimated by Geweke and Porter-Hudak (GPH) method 

and the computation was aided by R software through “fdGPH ()” function. 
 

2.5 ARFIMA model selection 
 

The best-fit models are chosen based on the smallest values of AIC. 
 

2.6 Residual analysis for the best fit ARFIMA (p, d, q) model 
 

Residual analysis helps in checking if the fitted model is adequately capturing the information in a given 

dataset. The best-fit forecasting model must possess the following properties: 
 

i) The residuals should be uncorrelated. If residuals are correlated, then there is information being left in 

the residuals that should be used in capturing forecasts. 

ii) Residuals should have zero mean, that is ; if residuals have a mean different from zero, then the 

forecasts shall be biased. 

iii) Residuals should have constant variance. 

iv) Residuals should be normally distributed. 

( ) 0E  =
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The above assumptions were checked using time plots ACF of residuals to ensure that the selected models are 

adequate. 
 

Also, Portmanteau tests designed to test whether a set of autocorrelations values is significantly different 

from a zero set were performed. These tests include Box-Pierce and Ljung-Box tests, but since the Ljung-Box 

test is an advancement of the Box-Pierce test, the recent study employed the Ljung-Box test for analyzing the 

residuals of UFMR fitted models (Shalalfeh et al., 2019). 
 

The Ljung-Box test is a diagnostic measure of white noise for a time series by assessing whether there are 

patterns in a group of autocorrelations. The test statistic is given by: 
 

                                                                                                                   
(6)

 
 

Where  stands for the number of observations in a time series;  is the maximum lag being considered and  

is the number of parameters in the fitted model. 
 

Hypotheses: 
 

H0: ACFs = 0 (ACF patterns are white noise) 

H1: ACFs ≠ 0 (ACF patterns are not white noise) 
 

The decision rule is that, if the p-value is greater than 0.05 level of significance, the null hypothesis is not 

rejected and it is concluded that the ACF patterns are white noise and vice-versa. The Ljung-Box test is 

executed using the function “box. test ()” in R software. 
 

2.7 The best fit autoregressive integrated moving average (ARIMA) model for 

forecasting UFMR 
 

According to Gujarati & Poter (2009), in building the ARIMA (p, d, q) model for forecasting UFMR, the Box-

Jenkins modeling steps namely; data preparation, model selection, estimation of model parameters; performing 

diagnostics for adequacy of the model and using the model forecasting future values, were followed by the 

researcher. ARFIMA is an extension of the ARIMA model and applies the same steps in its modeling as in 

ARIMA except for the differencing parameter, whereby the differencing parameter for ARIMA is the number 

of differences taken to the original data to become stable. The steps that are accomplished in constructing the 

ARIMA model are an estimation of model parameters and diagnostics or checking for adequacy of the fitted 

model. 
 

2.8 Comparing the accuracy of ARFIMA (p, d, q) and ARIMA (p, d, q) models in 

forecasting UFMR 
 

To compare the performance of ARIMA (p, d, q) and ARFIMA (p, d, q) in Forecasting UFMR in Tanzania, the 

study employed various validation measures to both best-fitted models. The two commonly used measures 

which are Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were employed as 

comparison tools. 
 

a) Root mean square error (RMSE) 

 

The smaller the value of RMSE, the better the model for forecasting future values. The theoretical formula for 

RMSE is given by: 
 

                                                                                                                                 
(7)

 
 

Where , = observed value, = forecast and = number of observations. 
 

b) Mean absolute percentage error (MAPE) 
 

MAPE is one of the frequently used measure for forecasting performance of models. Its coefficient measures 

the mean absolute percentage error of prediction (Chu, 2008). It is desirable that for a good forecast the 

obtained MAPE should be small. The mathematical formula for MAPE is given by: 
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(8)

 
 

Where , = observed value, = forecast value and = number of observations. 

 

3 Results and Discussion 
 

3.1 Results 
 

3.1.1 Best fit ARFIMA model for forecasting UFMR 

 

Test for long memory dependency existence in the UFRM data: Using R Software with “hurstexp ()” 

command, the theoretical Hurst Exponent statistic was 0.51488. Thus, it is obvious that the theoretical Hurst 

exponent Statistic is within the range  (Fig. 1). 

 

 
 

Fig. 1. ACF Plot Approach for Testing LMD 

 

Checking for stationarity of UFMR Data (Fig. 2): 

 

 
 

Fig. 2. Time Plots, ACF, and PACF for UFMR Data 
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Unit root test for stationarity of original UFMR Data (Fig. 3): 

 

ADF test for original UFMR data: 

 

Table 1. ADF Test Output after the Second Difference of UFMR Data 

 

Description Value 

Dickey-Fuller Test Statistic -3.8722 

Lag order 3 

P-value 0.02247 

 

The output of the ADF test in Table 1 proves that after the second differencing, the UFMR data have developed 

a stationarity state, with a p-value of 0.02247 being less than 0.05 level of significance. 

 

 
 

Fig. 3. Time Plot, ACF, and PACF of Stationarized UFMR Data 

 

a) Estimates of fractional differencing parameters (d)  

 

From the R function fdGPH (), the fractional differencing parameter was 0.284243, which is within the range

. The value suggests that the process is stationary and its autocorrelations are positive and 

hyperbolically decaying to zero. 

 

b) Estimates of AR and MA Parameters (p and q) and ARFIMA (p, d, q) Models 

 

Table 2. Fitted ARFIMA (p, d, q) Models and the Selected Best Fit Model 

 

ARFIMA Model AIC 

(1, 0.284243, 0) -88.82931 

(0, 0.284243, 1) -76.77929 

(1, 0.284243, 1) -87.61196 

(2, 0.284243, 0) -89.24496 

(0, 0.284243, 2) -98.45682 

(2, 0.284243, 1) -94.53553 

(1, 0.284243, 2) -106.776 

(2, 0.284243, 2) -105.9662 

 

0 0.5d  d
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There were eight identified contending ARFIMA (p, d, q) models as indicated in Table 2. Each model was fitted 

by setting the fractional differencing parameter (d = 0.284243) constant and thereafter the best model was 

identified based on the minimum value of AIC. The best-fit model was ARFIMA (1, 0.284243, 2) (see Table 3) 

with the corresponding AIC minimum value of -106.776. 

 

Table 3. Parameter Estimates for the ARFIMA (1, 0.284243, 2) Best Fit Model 

 

Parameters Estimates Std. Error Pr(>|z|) 

 

0.5899613 0.1253395 2.5151e-06 *** 

 

0.1767494 0.1023719 0.08425. 

 

-0.7630929 0.1110405 6.3219e-12 *** 

2

 = 0.0912208; Log-likelihood = 59.388; AIC = -106.776 

 

From equation (2), the following mathematical model for ARFIMA (1, 0.284243, 2) is formulated as follows. 

 

                                                            
(9) 

 

c) Residual analysis for the ARFIMA (1, 0.284243, 2) best fit model 

 

Residuals of the fitted model were analysed using time plots, ACF plots, and the portmanteau test. This was 

meant to ensure that the selected model was adequate for forecasting. 

 

Residual analysis of ARFIMA (1, 0.284243, 2) model by time plots, ACFs and PACFs plots: 

 

 
 

Fig. 4. Time Plots, ACF, and PACF for Residuals of the Best Fit ARFIMA (1, 0.284243, 2) 

 

The plots of ACF and PACF for residuals of the fitted ARFIMA (1, 0.284243, 2) model in Fig. 4 indicate that 

all autocorrelations are almost within 95% lower and upper limits, which implies that the residuals are white 

noise or randomly distributed. The selected model is fit and used for forecasting UFMR in Tanzania. 

 

Portmanteau test (Box-Ljung Test) for residuals of ARFIMA (1, 0.284243, 2) (see Table 4): 

 

Table 4. Box-Ljung Test Output for Residuals of ARFIMA (1, 0.284243, 2) Best Fit Model 

 

Description UFMR 

Chi-Square 0.56253 

Degrees of freedom (df) 1 

P-value 0.4532 

1


1


2
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( ) ( ) ( )
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Since the p-value is greater than 0.05 significance level, we fail to reject the null hypothesis hence verifying that 

the best fit ARFIMA (1, 0.284243, 2) model assumes the condition of white noise residuals. 

 

d) Forecasts of UFMR from the ARFIMA (1, 0.284243, 2) best fit model (see Table 5 and Fig. 5)  

 

Table 5. Forecasts for UFMR from the ARFIMA (1, 0.284243, 2) Best Fit Model 

 

Year Point Forecast 

2021 47.203896 

2022 45.98131 

2023 44.52824 

2024 43.08496 

2025 41.67229 

2026 40.29543 

2027 38.95560 

2028 37.65261 

2029 36.38565 

2030 35.1537 

 

 
 

Fig. 5. A Plot for Forecasts of UFMR from the ARFIMA (1, 0.284243, 2) Best Fit Model 

 

a. The best fit autoregressive integrated moving average (ARIMA) model for forecasting UFMR 

 

a) Fitted ARIMA (p, d, q) candidate models 

 

Table 6. Fitted ARIMA (p, d, q) Models and the Selected Best Fit Model 

 

ARIMA Model AIC 

(1, 2, 0) 43.21612 

(0, 2, 1) 52.81308 

(1, 2, 1) 44.41176 

(2, 2, 0) 44.18472 

(0, 2, 2) 48.20545 

(2, 2, 1) 46.11667 

(1, 2, 2) 45.17138 

(2, 2, 2) 47.0442 
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Each model in Table 6 is fitted by setting the differencing parameter (d) constant; subsequently, the best model 

is chosen based on the minimum value of AIC. In this case, the best-fit model is ARIMA (1, 2, 0) with 

43.21612 as the corresponding minimum value of AIC. 
 

b) Parameter estimates for the ARIMA (1, 2, 0) best fit model (Table 7) 
 

Table 7. Parameter Estimates for the ARIMA (1, 2, 0) Best Fit Model 
 

Parameter Estimate Std. Error 

 

-0.8097 0.0971 
 

Other parameter estimates are = 0.1318; Log-likelihood = -19.61 and AIC = 43.22 
 

The following mathematical model for the best fit ARIMA (1, 2, 0) model looks as follows:  
 

                                                                                                             
(14)

 
 

c) Residual analysis for the ARIMA (1, 2, 0) best fit model 
 

Residuals of the fitted models have been analysed using time plots, ACF plots, and the portmanteau test. This is 

meant to ensure that the selected model is adequate for forecasting UFMR (Fig. 6). 
 

Residual analysis for the ARIMA (1, 2, 0) best fit model by time plots, ACF and PACF plots: 
 

 
 

Fig. 6. Time Plots, ACF, and PACF for the Best Fit ARIMA (1, 2, 0) Model Residuals Analysis 
 

Box-ljung test for residuals of the (1, 2, 0) best Fit ARIMA model (See Table 8 and Fig. 7): 
 

Table 8. Box-Ljung Test Output for Residuals of the ARIMA (1, 2, 0) Best Fit Model 
 

Description Value 

Chi-Square 0.64842 

Degrees of freedom (df) 1 

P-value 0.4207 
 

d) Forecasts from the ARIMA (1, 2, 0) best fit model (Table 9)  
 

Table 9. Forecasts of UFMR from the ARIMA (1, 2, 0) Best Fit Model 
 

Year Point Forecast 

2021 47.3 

2022 45.7 

2023 44.1 

2024 42.5 

2025 40.9 

2026 39.3 

1


2



( ) ( )
2

1 0.8097 1
t t

C C X + − =
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Year Point Forecast 

2027 37.7 

2028 36.1 

2029 34.5 

2030 32.9 

 

 
 

Fig. 7. A Plot for Forecasts from the ARIMA (1, 2, 0) Best Fit Model 

 

Accuracy comparison between the ARFIMA (1, 0.284243, 2) and ARIMA (1, 2, 0) best fit models in 

forecasting UFMR (Table 10): 

 

Table 10. RMSE and MAPE Results for Comparing the ARFIMA (1, 0.284243, 2) and ARIMA (1, 2, 0) 

Best Fit Models 

 

Model Accuracy Measure Models 

ARIMA (1, 2, 0) ARFIMA (1, 0.284243, 2) 

RMSE 3.0717928 0.6753077 

MAPE 5.0955665 1.041106 

 

3.2 Discussion  
 

The existence of LMD in UFMR data is studied by using the Rescaled Range Analysis and ACF plots 

approaches to examine whether the ARFIMA is appropriate for modeling and forecasting UFMR data. The 

Theoretical Hurst Exponent Statistic of 0.515 dwells within the range 0.5 1H  . This result attests that UFMR 

data exhibit LMD and is therefore valid for modeling and forecasting using ARFIMA. Also, it is revealed from 

ACF plots that the data for UFMR portray LMD. This conclusion is supported by Adeyinka & Muhajarine 

(2020).  and Zhang et al. (2023). Both methods, Rescaled Range Analysis and ACF Plots demonstrate that the 

ARFIMA model is appropriate for modeling and forecasting UFMR in Tanzania. 

 

The stationarity of UFMR data is studied by using time plots; ACFs and PACFs; and the commonly used Unit 

Root Test, the so-called Augmented Dickey-Fuller (ADF). The results from time plots for original data reveal 

that downward movements are indicating a decline of under-five mortality rates over time. Also, the shapes of 

ACF are examined and the findings show that the autocorrelations of the series with themselves lagged one 

period, two periods, and so forth decline as the number of lags increases. The downward trends suggest that the 

data are not stationary and stabilization has been a necessary action. The stationarity is attained after 

differencing the original data twice, being evidenced by the p-value of 0.02247 in Table 1 of ADF outputs and 

the ACF and PACF plots in Fig. 3. These findings are in line with (Wang et al., 2007; Enaami et a., 2019). 
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The computed value of the fractional differencing parameter is 0.284243 which is actually less than zero but 

within the range 0 0.5d  . The value d suggests that the process is stationary and the autocorrelations are 

positive and hyperbolically decaying to zero. This finding is similar to a study conducted by Salman & Aboudi 

(2022). 

 

There are eight ARFIMA (p, d, q) identified competing models, which are (1, 0.284243, 0); (0, 0.284243, 1); (1, 

0.284243, 1); (2, 0.284243, 0); (0, 0.284243, 2); (2, 0.284243, 1); (1, 0.284243, 2) and (2, 0.284243, 2). Each of 

these models was fitted by setting the fractional differencing parameter (d) constant and thereafter the best 

model was identified basing on the minimum value of AIC (in bold) as shown in Table 2. Before applying the 

best-fit model for forecasting, it was subjected to residual analysis. The time plots, ACF, and PACF for 

residuals of the fitted ARFIMA (1, 0.284243, 2) model in Fig. 4 indicate that the autocorrelations are within the 

95% lower and upper limits, thus implying that the residuals are white noise or randomly distributed. Also, the 

Ljung-Box test findings in Table 4 reveal that the p-value is greater than the 0.05 significance level, hence 

verifying that the fitted ARFIMA (1, 0.284243, 2) model has white noise residuals. The forecasts from 

ARFIMA (1, 0.284243, 2) indicate that the Tanzanian FYDP Phase III (2021/2022 -2025/2026) target of 40 

deaths/1,000 live births by June 2026 will nearly be achieved as on average the rate of death will decrease to 41 

deaths /1,000 live births (MoFP, 2021).  

 

The forecast values indicate that by 2030, Tanzania will experience a decrease in UFMR to 35.2 deaths/1,000 

live births compared to 48.9 deaths/1,000 live births in 2020. Moreover, the results of UFMR forecast values 

indicate that there would be a 28% drop in the incidence of deaths to children aged less than five years from 

2020 to 2030 which is equivalent to a 2% drop annually. While the results signify that there would be a success 

in reducing the UFMR, the country would still have not achieved the UN SDGs target of reducing UFMR to 25 

deaths per 1,000 live births for each country by 2030. According to Eke and Ewere (2020b), to achieve the 

target for UFMR in Tanzania as set by UN SDG by 2030, the country would have to experience a drop of 49% 

which is equivalent to 4% per annum. 

 

On the other hand, the ARIMA (1, 2, 0) is found to be the best-fit model and used to forecast future values of 

UFMR from 2021 to 2030. The forecast trends indicate that by 2030, Tanzania will experience a decrease in 

UFMR to 32.9 deaths per 1,000 live births compared to 48.9 deaths per 1,000 live births in 2020. Furthermore, 

forecast values indicate that there would be a 33% drop in the incidence of deaths to children aged less than five 

years from 2020 to 2030 which is equivalent to 3% drop annually. The forecasts from ARIMA (1, 2, 0) indicate 

that the Tanzanian FYDP Phase III (2021/2022 -2025/2026) target of 40 deaths/1,000 live births by June 2026 

is likely to be achieved as on average the rate of death will decrease to 40.1 deaths/1,000 live births (MoFP, 

2021). While the results signify that there would be a success in reducing the UFMR, but still the country would 

have not achieved the UN SDGs target of reducing UFMR to 25 deaths/1,000 live births by 2030. According to 

Eke and Ewere (2020b), in order to achieve the target for UFMR in Tanzania as set by UN SDG by 2030, the 

country would have to experience a drop by 49% which is equivalent to 4% annually. 

 

The results of the comparison between the forecasting accuracy of ARFIMA and ARIMA best by using RMSE 

and MAPE model forecasting accuracy measures, the results reveal that the ARFIMA (1, 0.284243, 2) model 

performs better than ARIMA (1, 2, 0). This conclusion is supported by both RMSE and MAPE values for the 

ARFIMA model being smaller than those of the ARIMA model. These findings are the same as those of a study 

by Dingari et al. (2019). Moreover, the results are related to a study by Siew et al. (2008) that focused on the 

comparison between ARFIMA and ARIMA in forecasting air pollution index in Malaysia, where the ARFIMA 

model emerged to have at least accurate forecasts according to MAE, RMSE and MAPE model accuracy 

forecasting techniques.  

 

4 Conclusion 
 

Under this study, the ARFIMA (1, 0.284243, 2) and ARIMA (1, 2, 0) are found to be the best-fit models. The 

comparison between the two models in terms of forecasting accuracy by using RMSE and MAPE measures is 

conducted and the results reveal that the ARFIMA model performs better than the ARIMA model, since both 

RMSE and MAPE values for the ARIMA are smaller than those of ARFIMA model. So, it suggested that the 

forecasts from ARFIMA model can be utilized by planners and policy makers in formulating frameworks and 

policies as well as setting UFMR targets for Tanzanian Five Year Development Plans. 
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