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Abstract 

 
This study deals with the uniform motion of an adhesive, incompressible fluid flowing over a porous oblate 

spheroid at tiny values of the Reynolds number. These types of problems have been considered by dividing 

fluid flow into three regions, namely, zone I, zone II, and zone III. In the zone I, which is completely filled 

with viscous fluid, is the region of the porous oblate spheroid, and in this region fluid flow is governed by the 

equation suggested by Brinkman. The zone II and the zone III, where the clear fluid flows, are the regions 

outside the porous oblate spheroid. The fluid flow in these two zones has been discussed using the 
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perturbation method given by Proudman and Pearson in which the Stokes stream function is expanded in 

terms of Reynolds number. This solution is then matched with the Oseen solution, At the interface of zone II 

and zone I, the matching conditions suggested by Ochoa-Tapia and Whitaker are applied for matching the 

stream function of the clear fluid region with that of the porous region at the surface of the oblate spheroid. It 

has been found that the drag on the oblate spheroid reduces with that of the departure from the spherical 

shape. Similar effects of the drag on the spheroid are obtained when the permeability of the porous medium 

increases. Also, the drag experienced on the porous oblate spheroid is directly proportional to Reynolds 

number and the ratio of effective viscosity of the porous medium to the real viscosity of the fluid. The 

application of a viscous fluid flow past a porous oblate at low Reynolds number is to calculate the friction 

factor and drag in internal and external flow, hydraulics study, aerofoil design, filtration technology, 

geothermal energy, and precipitation. 

 

 
Keywords: Reynolds number; porous oblate spheroid; viscous fluid. 
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1 Introduction  
 

The complication of the flow of fluid in all directions as an obstacle has been considered by Stokes for the 

motion of the fluid in which the inertial outcomes of the fluid are neglected. Payne and Pell (1960) have 

discussed the Stokes flow problem around the axially symmetric bodies and obtained the solution by using 

potential theory developed by Weinstein (1948, 1955). They obtained the streamlet task and drag for the fluid 

flow over the oval-shaped and oblate spheroids, which agreed with the output of the Oberbeck (1876). Happel 

and Brenner (1965) have discussed the difficulties of uniform flow over a spheroid. This departs but a tiny bit in 

shape from a sphere. The polar form of the equation of a spheroid is taken hold as. 

  

r* = c{1 + mm()},                                      (1) 

 

the coefficients m is enough little so that the square and big powers may be eliminated, that is 
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here r* is the distance measured from the centre of the spheroid, c is the polar radius, m is Gegenbauer’s 

function of order m and  = cos. To satisfy the boundary conditions, they have expressed the product of 2 and 

m as linear combination of m–2, m and m+2. The results for an oblate spheroid are deduced by taking m = 2 

and m = 2. All these workers have neglected inertia terms thus taking Reynolds number to be zero.  

 

Aoi (1955) has derived an exact analytical solution of the equations of motion for Oseen’s flow past a spheroid 

by taking the steady state conditions. He has computed the drag experienced by prolate and oblate spheroids for 

small Reynolds numbers. The study of the flow of the viscous fluid at small Reynolds number about an 

impervious solid sphere has been investigated by Proudman and Pearson (1957). They have considered the 

expansions in powers of Reynolds number in two different regions. An inner expansion, which is called Stokes 

expansion, that is valid in the region that is close to the surface of the sphere, and an external growth, called 

Oseen’s growth or increase in size, which is reasonable for the region that is at the huge interspace from the 

outside aspect of the sphere. They also assumed that these two different expansions are of the same form of the 

function, which then are matched using the boundary conditions at a distance far away from the sphere. The 

results of Proudman and Pearson (1957) for a sphere have been generalized by Breach (1961) for an ellipsoid of 

revolution, both prolate and oblate. He has given a table for the main constant, which determines the drag, as 

well as Oseen’s solution for various values of eccentricity of prolate and oblate spheroids. 

 

In many situations, the particles that are broadly used in technological progress, particularly in chemical 

engineering procedures in the industry, are porous. Porous prill is applied considerably in catalytic or motivation 

reactors. The convectional movement in these porous tiny bits, or atoms, may increase or magnify 
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successfulness components and modify the discrimination of the chemical reactor (see, Nir and Pisman 1977). 

Porous particles are regularly obtained in the airspace and in additional surrounding structures; here they are 

obtained by vapor distillation–condensation process (see Pruppacher and Klett 1978). Hence many workers have 

discussed the flow past porous particles that are spherical or approximately spherical. Feng and Michaelides 

(1998) considered the problem of fluid flow around a porous sphere for small values. Reynolds number. 

Following Proudman and Pearson (1957), they assumed that Darcy’s law governs the motion of the fluid flow in 

the region inside the sphere and that in the region that is outside the sphere, Navier-Stokes equations govern the 

flow of the fluid. They obtained the solution by matching the motion of the fluid inside and outside the porous 

sphere at the surface of the sphere using the conditions suggested by Saffman’s (1971). The problem of fluid 

flowing inside and past a spheroid that is isolated and permeable has been discussed by Vanishtein et. al. (2002). 

They assumed that there is no inertia force and took the direction of flow along the axis of the spheroid and 

obtained the solution of the equation of fluid flowing through the region around the spheroid by applying Stokes 

equation for creeping flow and that in the region inside the spheroid using Darcy's law. They obtained that the 

transition of internal fluid flow is very much affected by the shape and dimensions of particles. Srinivasacharya 

(2003) has studied the creeping flow of adhesive fluid, which passes through a porous estimate sphere 

neglecting inertia terms. He had concluded the result for an oblate spheroid. Moreover, his calculations for the 

drag on the imprecise sphere are wrong because the contribution of the term containing J4(h) in the expansion 

for the drag should be zero. 

 

For the medium of high porosity, the equation suggested by Brinkman (1947) is so fit for describing the flow of 

fluids through the permeable medium. Furthermore, for the majority of the flow of fluid in the permeable 

medium, it is obtained that the coefficient of effectual viscosity me is not the same as m, which is the viscosity of 

clear fluid (see Giveler and Altobeli 1994). When fluid flows in the porous regions, the Brinkman equation is 

applicable, and for the fluid flows outside the porous regions, the Navier-Stokes equations are used. For the 

fluid flows at the collaborate of the clear fluid and permeable medium, matching conditions that are suggested 

theoretically by Ochao–Tapia and Whitaker (1995) and experimentally (Ochao–Tapia and Whitaker 1995) are 

used. In these matching conditions, they assumed that at the interface there is a continuousness of velocity and 

the normal stress while shearing stresses are discontinuous at the interface. Using these assumptions, the 

problem of viscous fluid flowing over a permeable, spherical-shaped structure has been studied by Srivastava 

and Srivastava (2005) for small values of the Reynolds number. In this problem, the results of Srivastava and 

Srivastava (2005) are used to discuss the flow past a porous oblate spheroid by applying the method suggested 

by Happel and Brenner (1965) for satisfying the matching conditions at the interface of the spheroid. Combined 

boundary layer complications of this type have been obtained by many workers, like Neale et. al. (1973), Adler 

(1981), Jones (1973), Srivastava (1999), Langlois (1964), Iyengar & Radhika (2015), and Alexander et. al. 

(2022). 

 

The effects of radiation and thermal diffusion on MHD heat transfer flow of a dusty viscoelastic fluid between 

two moving parallel plates have been studied by B. M. Reddy et. al. (2018). The radiative MHD Walter’s 

Liquid-B Flow Past a Semi-Infinite Vertical Plate in the Presence of Viscous Dissipation with a Heat Source, 

Engineering Transactions, has been presented by Chenna et. al. (2021). An analytical study on induced magnetic 

field with radiating fluid over a porous vertical plate with heat generation has been studied by Chenna et. al. 

(2017). Radiation effect on MHD oscillatory flow in a channel filled through a porous medium with heat 

generation, Journal of Mathematical Control Science and Applications Chemical reaction and radiation 

absorption effects on convective flows past a porous vertical wavy channel with travelling thermal waves, 

International Journal of Fluid Mechanics Research; MHD effect on convective flow of dusty viscous fluid with 

fraction in a porous medium and heat generation and magneto-compound reaction of convective flow via a 

porous inclined plate with Heat Energy Absorption has been studied by Chenna et al. (2019, 2020, 2021, 2024). 

Reddy et. al. (2021) has been studied hall effect on MHD flow of a visco-elastic fluid through porous medium 

over an infinite vertical porous plate with Heat Source. G. Balreddy et. al. (2024) has been proposed radiation 

absorption and chemical reaction effects on MHD flow through porous medium past an exponentially 

accelerated inclined plate with variable temperature. 

 

The effects of Hall current and rotation, heat generation on MHD free convection heat and mass transfer flow 

past an accelerated vertical plate, and analytical solutions for transient free convection MHD flow through a 

porous medium between two vertical plates with a heat source have been studied by G. Balreddy et. al. (2023, 

2022).  Ramesh Babu et. al. (2022) has been studied chemical reaction and Hall effects on unsteady flow past an 

isothermal vertical plate in a rotating fluid with variable mass diffusion with a heat source. In another paper, 
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Ramesh Babu et. al.(2024) have studied variable temperature, radiation absorption, and chemical reaction 

effects on unsteady MHD flow through a porous medium past an oscillating inclined plate. Ravikumar et. al. 

(2023) has studied the effects of diffusion on the mechanism of peristaltic flow at slip boundaries when internal 

Joule heating is present. In another paper, Ravikumar et. al. (2023) has studied the effects of Joule heating and 

reaction mechanisms on couple stress fluid flow with peristalsis in the presence of a porous material through an 

inclined channel. The significance of heat and mass transport in peristaltic flow of Jeffrey material subject to 

chemical reaction and radiation phenomenon through a tapered channel and the study of hall current, radiation, 

and velocity slip on hydro magnetic physiological hemodynamic fluid with porous medium through joule 

heating and mass transfer in the presence of chemical reaction has been presented by Ravikumar et. al.(2022, 

2018). He found that the temperature of the fluid rises with the lead of Hartmann number (M), porosity 

parameter (Da), radiation parameter (N), Prandtl number (Pr), Brinkman number (Br), heat source parameter 

(v), and Hall current parameter (m). he has also obtained that the concentration profile lacks with the lead in 

chemical reaction parameters. 

 

Ravikumar and Abzal (2017) have presented the combined influence of hall currents and joule heating on 

hemodynamic peristaltic flow with porous medium through a vertical tapered asymmetric channel with 

radiation. They have obtained the pressure gradient lacks by rise in hall current parameter, porosity parameter, 

and volumetric flow rate. The temperature of the fluid leads by lead of magnetic parameter M, parameter N, 

parameter Pr, and Br, and lacks by leads in m and Da. In another paper, Ravi Kumar (2023) has studied the 

rotation effect on a fluid model exhibiting thermo-diffusion in a porous environment subject to convective 

boundary conditions through a slanted conduit. Khan et. al.(2023) have presented the understanding of Prandtl 

fluid flow in conduits with slip boundary conditions: Implications for engineering and physiology. Ravi Kumar 

(2015) has studied the effect of couple stress fluid flow on magneto hydrodynamic peristaltic blood flow with a 

porous medium through an inclined channel in the presence of a slip effect. 

 

2 Formulation of the Problem 
  

Let us consider the flow of viscous fluid past over a porous oblate spheroid with an uniform velocity U parallel 

to its axis of revolution.  

 

The spheroid is completely filled with the fluid. Let (r*,, ) be the spherical polar coordinates with centre of 

the spheroid being at the origin, then the polar equation of the spheroid is  

 

r* = a(1 –  cos2) = a[1 –  + 22()] = c [1 + 22()],                                  (3) 

 

where a = c(1 + ) and  is a very small quantity whose square and higher powers are negligible. The constants 

a and c are called equatorial radius and polar radius of the spheroid respectively. In this problem the region of 

fluid flow has been divided in three zones (see Fig. 1). For the fluid flow inside the porous oblate spheroid, 

region is taken as  Zone I and following Brinkman equations[3] governs the flow of fluid. 
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here k denotes the permeability of porous oblate spheroid, v denotes the velocity vector and p denotes the 

pressure at any point in porous oblate spheroid. The parameter e represents the effectual viscosity of the porous 

oblate spheroid. It is assumed to be dissimilar from parameter. This represents the coefficient of viscosity in 

clear fluid zone. The regions where clear fluid flows are Zones II and III and the flow fluid. This zone is 

controlled by the Navier–Stokes equation. For the flow of clear fluid near the surface of the porous oblate 

spheroid in Zone II, Stokes’ approximations are reasonable. 
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Fig. 1. The schematics diagram of the problem 

 

Let us assume that u and v be velocity of fluids in the direction of r* and  respectively. Then Stokes stream 

function  in spherical polar coordinates system is represented by 
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Assuming that the sign i denotes the zone undergoing assumption. The boundary situation for the flow issue can 

be represented as given below: 

 

u(1)  and v(1) are finite at r* = 0 ,                        (6) 

 

u(3) → U cos , v(3) → – U sin ,    as r* →  ,                                   (7) 

 

In the interface of porous oblate spheroid and clear fluid r* = c[1 + 2 2()]. We consider that the components 

of velocity along with normal stress r*r* are continual and shearing stress r*  has jump which is specified by 

the equation has been proposed by (Ochoa–Tapia and Whitaker 1995). In this notations, at the interface r* = c[1 

+ 22()], these conditions are given by 

   

(1) = (2),                          (8) 
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where  represents a constant of order. The sign of   is either positive or negative. The formulations for r* and 

r*r* in the spherical polar coordinates system is represented by  
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3 Solution of Equations 
 

Since equations of Brinkman and Stokes are alike same. Let us consider the following variables for zones I and 

II as  

 

)()(2
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pUΨcΨ ==   ,     for    i = 1, 2 and r* = c r,                  (14) 

 

In zone I, using the above variables, eq. (4) becomes 

 

2E4(1) – 2E2(1) = 0,                       (15) 

 

where 
k

c
= represents the Darcy number and the operator E2 in dimensionless form is defined as 
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In terms of (2),  for the zone II, Navier–Stokes equation can be written as: 
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where Re = Uc/  represents the Reynolds number and  = / denotes the kinematic coefficient of viscosity. 

The following Oseen’s variable is introduced for the flow in zone III  
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In zone III, the following expression for (3)(r, ) can be obtained using Navier–Stokes equation (see, Langlois 

1964),Page (148), eq. (4.7)]  
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This formulations of (3)(r*, ) represents the solution of the equation (17). If we take (B/12) instead of B in the 

equation (20) then with proper adjustment of variables we get the  proposed by Breach as the Oseen’s solution 

for spheroids (see, equation (14), page 307 of Breach 1961), Hence it is justified to take (20) as Oseen’s solution 



 
 

 

 
Srivastava et al.; Asian J. Math. Comp. Res., vol. 32, no. 1, pp. 52-77, 2025; Article no.AJOMCOR.12668 

 

 

 
58 

 

for the flow over a porous oblate spheroid. Value of B is found to be of the form B1 + B2 when it is evaluated 

such that (20) matched with the expression of  for Stokes solution at the surface of spheroid given by (3) 

which contains. It has been found that when the oblate porous spheroid is taken in place of the solid 

impervious sphere of radius ‘c’ the constant B = 3/4 and (20) represents a right answer of Oseen’s formulation 

(see, Langlois 1964). Putting Oseen’s variable in solution (20) and expressing in powers of Re. we obtain the 

expression given below  
 

)](0)1)(1()4/1()1(Re[)1()2/1(
322222)3(
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               (21) 

 

It may be noted that if in the equation (21) we want to write /eR aU= instead of  Re [Re = (1–)Re], then 

the constant B should be taken as B(1–). In order to match this stream function given by (21) with the Stokes 

stream function (2), we revise it in the Stokes’ variable as: 
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In order to solve equations (4) and (17) respectively in zones I and II, we take the following expressions of  

streamlet function (i) and pressure p(i) in terms of Reynolds number Re is represented as: 
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3.1 First approximation 
 

Substituting (23) in the equations (15) and (17), we get the following differential equations for 
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where  = / . The solution of (25) is an infinite series of the type 


=2n

F0(r)n() (see, equation (4 – 25.3) of 

(Happel and Brenner 1965). Here, we are discussing the flow past porous spheroid given by equation (3) in 

which only 2() occurs. In the matching conditions for flow of fluid at the interface of the oblate porous 

spheroid and free flow zone only )(
2

2
  occurs which can be expressed as 
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Hence, we take only two terms of the series and assume the following form for 
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Substituting these expressions for 
(2)

0

)1(

0
  and   in the equations (25) and (26) respectively, we obtain the 

differential equations for F02(r), F04(r), f02(r) and f04(r) which are integrated with respect to r. Then we have 

obtained the following equations for F02(r), F04(r), f02(r) and f04(r) respectively. 
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In writing the expressions (30)–(33), the constants of integration which are multipliers of the solutions which are 

not defined at the centre of the oblate porous spheroid or at the large distance from the surface are assumed to be 

zero.  

 

For the region given by zone II when r → , we assume take the following first approximate solution as  
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which is then matched with the first term that is not dependent of Re of the result given in (22). The other 

constants A, B, K, C, A04, B04, K04 and C04 are to be found by matching the solutions (32) and (33) with that of 

equations of Brinkman (30) and (31) at the surface of oblate porous spheroid. 

 

In the matching conditions at the surface of spheroid, we take r = 1 + 22() in F02(r) and f02(r) and r = 1 in 

F04(r) and f04(r) because terms containing 2 and higher powers of  are neglected. We expand F02(r) and f02(r) 

in powers of  (neglecting 2 and higher powers) at the interface i.e. we take 

 

)(0)()1(2)())(21(
2

20202202
++=+  FrFF ,                   (35) 

 

)(0)()1(2)1())(21(
2

20202202
++=+  fff ,      (36) 

 

Substituting (28), (29) in the matching condition (8) and using (35) and (36), we get 

 

)()1()()}()1(2)1({2
404220202
 FFF ++ )()1()}()1(2)1({2

40420202
 fff ++= ,         (37) 

 

Substituting equation (27) and the equations (30)–(33) in the equation (37), we get 

 

2[K + C (sinh –  cosh) – (A – B + 1/2)]2()  sinh)1{(2[
5

8 2
+−


+ CK  

 ))()()](1()cosh
42
 −−++− BA + [K04+C04{(62+15) sinh  

 

  – (2+15)cosh}– (A04+B04)]4() = 0,                                                                           (38) 

 

This equation suggests that the constants A, B, C and K should be taken of the following form 

 

A = A01 + A02,   B = B01 + B02,     C = C01 + C02,   K = K01 + K02,                                             (39) 
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Substituting equation (39) in equation (38) and then equating the coefficient of 2(), 2() and 4() on 

both sides, we have the following three equations: 

 

K01 + C01(sinh –  cosh) – A01 + B01 = 1/ 2,                    (40) 

 

K02 + C02(sinh –  cosh) – A02 + B02    

 ]1[
5

4
}]coshsinh)1{(2[

5

4
0101

2

0101
−+−−++−= BACK  ,   (41) 

 

K04 + C04{(62 + 15) sinh – (2 + 15) cosh} – A04 – B04   

 ]1}coshsinh)1{(2[
5

8
0101

2

0101
−++−+−= BACK  .                 (42) 

 

Substituting equations (28), (29) in the matching condition (9), using equations (27), (30)–(33), (35), (36) and 

(39) and following the same procedure as above, we get the another set of equations for (A01, B01, C01, K01), (A04, 

B04, C04, K04): 

 

2K01 + C01{ cosh – (2 + 1) sinh} + A01 + B01 = 1,                   (43) 

 

2K02 + C02( cosh – (2 + 1) sinh) + A02 + B02   

  ]12[
5

4
}]cosh)1(sinh)1{(2[

5

4
01

22

0101
+++−++−−= ACK  ,  (44) 

 

4K04 – C04{(4 + 21 2 + 45) sinh – (62 + 45) cosh } +3A04 + B04    

             ]12[
5

8
}]cosh)2(sinh)2{(2[

5

8
01

22

0101
+−+−++−= ACK                 (45) 

 

Equating the velocity components on two sides of the interface we have obtained six conditions (40) – (45) from 

(8) and (9). Now, we shall derive similar equations from (10) and (11) given in the stress components. As rr 

contains pressure, we shall derive the expressions for 
)1(

0
P  and 

)2(

0
P . Writing equation (4) and Navier–Stokes 

equation in terms of  spherical polar coordinates and substituting 
)(

0

i
  and then the resulting differential 

equation is  integrated, which gives the expressions of pressure for the first estimation or approximation in 

regions I and II respectively as  

 

 







−



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


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
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4

2
02

2

0232

02

02

2)1(

0
rFF

rr

F
FP ,      (46) 
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






+


−=

0232

02

02

)2(

0

4
2 f

rr

f
fP ,         (47) 

 

Substituting equations (13), (5), (27), (28)–(33) and (39) in the matching condition (10) and proceeding as 

earlier we obtain the following equations: 

 

}sinh)123(cosh)12{(
2432

01
 −−−−C

}]coshsinh)1{(2[
2

0101

2
 −+−− CK

 
= 6(2A01 – B01),                                (48) 

}sinh)123(cosh)12{(
2432

02
 −−−−C  

}]coshsinh)1{(2[
2

0202

2
 −+−− CK – (12A02 – 6B02)  
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+ }cosh)482(sinh)4818({
5

2 35242

01
 −−+−−−C

   

            

}]cosh)2(sinh)2{(2[
5

2 32

0101

2
 +−++= CK ]1248[

5

2
0101

BA +−+  ,     (49) 

0404

322

0404

2
35}]cosh)758(sinh)7533{(2[ BACK +++−++−   

}cosh)482(sinh)4818({
5

2 35242

01
 −−+−−−+ C  

}]cosh)2(sinh)2{(2[
5

2 32

0101

2
 +−++= CK ]1248[

5

2
0101

BA +−+ ,           (50) 

 

In the same way, substituting equations (12), (5), (27), (28)–(33) and (39) in the matching condition (11) and 

proceeding as earlier, we get 

 

01

22

01

2
6}]cosh)6(sinh)63{([ AC −+−+  )1(

0101
BA −−=  ,                 (51) 

 

)(6}]cosh)6(sinh)63{([
020202

22

02

2
BAAC ++−+−+   

       

]18cosh)183(sinh)189{([
5

4
01

224

01

2
AC −−−+−=  )12[

5

4
01
++ A ,         (52) 

 

}]cosh)45051(sinh)4502018{(16[
3524

0404

2
 ++−+++ CK

)3()1630(
04040404

BABA +++− 

]18}cosh)183(sinh)189({[
5

8
01

224

01

2
AC −−−+−−= 

 

)12[
5

8
01
+− A ,                       (53) 

 

For given ,  and  , twelve constants (A01, B01, C01, K01), (A02, B02, C02, K02) and (A04, B04, C04, K04) can be 

calculated from equations (40)–(45) and equations (48)–(53). In Table 1, we have calculated these constants for 

various values of   by taking  = 5.0 and   = 0.5, – 0.5. In order to study the effects of variability of 

permeability parameter of the oblate porous spheroid, we determined above constant for 2 = 1.0,  = 0.5, –0.5 

and  = 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 and are given in Table 2. 

 

3.2 Second approximation 
 

In this approximation, first we determine the solution in zone II near the plane or surface of the porous oblate 

spheroid, which is obtained by matching this solution with the corresponding solution for the flow in zone III. 

Then for the flow in zone I, the solution for the second approximation is obtained by matching it with that of the 

corresponding solutions of zone II. Using equations (23), (29), (32), and (33) in equation (17), the following 

differential equation for ),(
)2(

1
 r is obtained when the coefficient of Reynolds Number Re is equated on both 

sides of equation. The function for ),(
)2(

1
 r  gives the second approximation for Stokes stream function in 

the zone II: 
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2
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2

3

7
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
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


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
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 ,                     (54) 
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In writing the equation (54) when )(
)2(

0
  is substituted in left hand side of equation (17), the derivatives of 

2(),4() and their products appear which are rearranged in terms of Gagenbaur functions 3(),4(), 

5(),7(). Following equation (54), the following form for
)2(

1
   is assumed: 

 

)()()()([)()(2)()(2
51541413212

)2(

1
 rfrfrfrf

3
+++=  + f17(r)7()] ,                          (55) 

 

This form of 
)2(

1
 (r,) is taken according to the coefficient of Reynolds Number Re in the equations for   (3)(r, 

). Putting equation (55) in (54) and equating the coefficients of 2(), 3(), 4(), 5(),7() on both sides 

of (54), we get 

 

0)(
2

12

2

22

2

=







− rf

rdr

d
,                       (56) 
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When large values of r are taken, the solution f12(r) of the equation (56) should be matched with the coefficients 

of Re(1 – 2) in (3)(r, ) which given in the equation (22). Thus, integrating (56), the solution for f12(r) is given 

by 

 

)(
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)(
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12
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Integrating equations (57)–(60), the expressions for f13(r), f14(r), f15(r) and f17(r) are given by 
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







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045043044
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792
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2376

125
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r
B

r
B
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B

r

A
rf .                   (65) 

 

where M, N, A14, B14, A15, B15, A17, B17 are constants of integration. These constants are to be determined under 

the condition that the expression for 
)2(

1
 given in (55) matches with the corresponding solution of Brinkman 

problem for flow in zone I. It may be found that when f13(), f14(), f15() and f17() are substituted in 
)2(

1
 (r, 

), we get the following expression of
)2(

1
 (r, ) for large values for r  

 

)1)(1(
4

),(
22)2(

1
 −−= r

B
r  

 

which is exactly similar to that of the expression of Oseen’s solution designated by the coefficient of Re in the 

equation (22). Now, we shall determine the solution for the second approximation of the Brinkman equation in 

zone I. The flow of fluid in zone I is not dependent of Re so when (1) is expanded in powers of Re and 

substituted in (15), the function 
)1(

1
  which is coefficient of Re satisfies the following equation  

 

0
)1(

1

22)1(

1

42
=−  EE ,                (66) 

 

The expression for 
)1(

1
  has to match with that of 

)2(

1
 (r,) given in the equation (55) at     

   

 r = 1 + 22(). Hence we assume the following form for 
)1(

1
 (r,): 
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 rFrF ++  ,     (67) 

 

When the expression of 
)1(

1
 (r, ) given in  equation (67) is substituted in equation (66), the differential 

equation obtained for  F12(r) is same as the differential equation for F02(r) and it has to match with 
)2(

1
  at r = 1 

+ 22(), hence F12(r) is given by 
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The differential equations satisfied by F13(r), F14(r), F15(r) and F17(r) are given by  
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Integrating equations (69) – (72), we obtain the following solutions: 
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In writing the expressions (73)–(76), the constants of integration that are multipliers in the terms of the solutions 

which are not defined at r = 0, are chosen as zero. The constants S, T, K14, C14, K15, C15, K17, C17 are to be 

calculated by matching (67) with (55) at r = 1 + 22(). Substituting equations (55) and (67) in the matching 

condition (8) and expanding F12, F13, f12, f13 up to first power in  as in equation (35) and (37), we get 
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Substituting equation (27), ))()((
3

2
5332
 −=  , equations (61)–(65), (68) and equations (73)–(76) in 

equation (77) and applying the same procedure as stated in first approximation, we get equations (A1), (A2), 

(A3), (A4) given in appendix. Similarly, the matching conditions (9) give the equation (A5), (A6), (A7), (A8) 

where M, N, S, T have been written as: 

 

M = M11 + M12, N = N11 + N12 ,  S = S11 + S12 , T = T11 + T12 . 

 

The solutions of the components of pressure and stress are obtained for the second approximation in Re and 

substituting the expression for ),(
)1(

1
 r  and ),(

)2(

1
 r  from equations (55) and (67) in the matching 

conditions (10) and (11) at r = 1 + 22(), we get twelve equations (A7) – (A20). We have calculated the 

values of the constants (M11, N11, S11, T11), (M12, N12, S12, T12), (A14, B14, C14, K14), (A15, B15, C15, K15), (A17, B17, 

C17, K17) from equations A(1)–A(20) given in appendix for  = 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 by taking  = 0.5, 2 = 

1 and it is represented in Table 3. 

 

4 Results and Discussion 
 

For motion of fluid at infinity, the stream function is given as 

  

  
22

sin*
2

1
Ur=


,                     (78) 
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The stream function  –  at infinity represents a state of rest and the drag 
*

r
D  that is employed by the fluid 

flow in porous oblate spheroid in our notation is given by (see, equation (4.2) of Payne and Pell (1960)): 

2

)2(2

*

* )(*
lim8




 

→

−
=

Ucr
D

r
r                      (79) 

 

where = r* sin. Substituting 
)2(

0
  and 

)2(

1
  from (29) and (55) respectively in the equation (23) and then in 

the equation (79) we get the expression for 
*

r
D as 

 








 +
++=

2

)(
Re)(8

2

0201

0201

* BB
BBcD

r
 ,                                               (80) 

 

In case we want to write ‘a’ instead of c, the dimensionless drag Dr on the spheroid is given by  

 


















−++−+== )(
2

eR)(
3

4

6
010201

2

01

010201

*

BBB
B

BBB
Ua

D
D r

r


,                 (81) 

 

the constant c is replaced by a(1 – ) neglecting 2 and higher powers  and Re is replaced byRe. The values 

of B01 and B02 when the porous spheroid is replaced by a solid one are given by assuming the velocity 

components to be zero at the spheroid and in this case the equations (40), (41), (43) and (44) respectively 

become  

2

1
0101
=+− BA ,          (82) 

 

]1[
5

4
01010202
−+−=+− BABA ,        (83) 

 

A01 + B01 = 1,                        (84) 

 

]12[
5

4
010202
+=+ ABA ,         (85) 

 

The above equations give 
4

3
01
=B  and 

5

3
02
=B  so the dimensionless drag Dr in this case is 

 

eR
5

2
1

8

3

5
1 








−+


−=

r
D ,         (86) 

 

In the case whenRe = 0, the expression of the drag Dr agrees with that given in the equation (4– 25.23) on page 

144 by Happel and Brenner (1965) and it also agrees with that given by Payne and Pell (1960), Aoi (1955) has 

given the following expression for the drag coefficient for an oblate spheroid in his equation (41) as: 

 









+=

25
1

64 R
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D
,          (87) 

 

where }cot)1{(12
00
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0
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0
TTTTS +−+=
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,       (88) 
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υ

aV
  R

ba

b
T

2
  ,

22
0

=
−

= .                      (89) 

 

Replacing b, R, CD by c, 2Re, 32Dr/Re respectively, in the equations (87)–(89) and expanding the entities in 

powers of  neglecting 2 and higher powers of , the equation (87) becomes exactly the equation (86). Hence 

our results for small Reynolds number agree completely with those of Aoi. We have calculated that the 

expression of drag for an oblate spheroid given by Breach (1961) when log Re is neglected becomes exactly the 

same as given by (81). Hence our results agree for a solid oblate spheroid with those of earlier workers, and we 

expect that results derived in this paper for a porous oblate spheroid are correct. 

 

Table 1. The values of the constants (A01, B01, C01, K01), (A02, B02, C02,K02), (A04, B04, C04, K04) for various 

values of  for  = 0.5, – 0.5 and  = 5 

 

2 1.0 3.0 5.0 7.0 9.0 

 = 0.5 A01 

B01 

C01 

K01 

A02 

B02 

C02 

K02 

A04 B04 

C04 K04 

0.06073 

0.45765 

0.00028 

0.01831 

0.18890 

0.4782 

0.0011 

0.0346 

47.6047 

93.9205 

0.00973 

71.7489 

0.1047 

0.5377 

0.0057 

0.0150 

0.3369 

0.5502 

0.0136 

0.0179 

10.994 

18.648 

0.7512 

26.304 

0.1573 

0.5619 

0.0171 

0.0063 

0.4415 

0.6617 

0.0372 

0.0264 

1.6322 

2.0019 

0.1681 

18.538 

0.1688 

0.5742 

0.0329 

0.0096 

0.4719 

0.6282 

0.0659 

0.0215 

0.2953 

0.9858 

0.0075 

4.1573 

0.1704 

0.5763 

0.0524 

0.0117 

0.4810 

0.6326 

0.0985 

0.0181 

18.528 

3.5875 

0.0070 

32.428 

 = –0.5 A01 

B01 

C01 

K01 

A02 

B02 

C02 

K02 

A04 B04 

C04 K04 

0.1753 

0.6211 

0.0001 

0.0248 

0.4618 

0.6020 

0.0036 

0.0238 

1.2139 

2.4747 

0.0005 

2.5322 

0.1913 

0.6329 

0.0025 

0.0160 

0.4970 

0.6182 

0.6062 

0.0158 

20.457 

4.1601 

0.2360 

7.9752 

0.1981 

0.6387 

0.0081 

0.0112 

0.5134 

0.6272 

0.0165 

0.0143 

4.5609 

12.441 

0.4308 

23.155 

0.2024 

0.6412 

0.0164 

0.0094 

0.5239 

0.6326 

0.0299 

0.0142 

14.946 

33.006 

1.2092 

58.446 

0.2031 

0.6435 

0.0268 

0.0050 

0.5277 

0.6370 

0.0449 

0.0136 

38.225 

78.915 

3.8276 

134.196 

 

Table 2. The values of the constants (A01, B01, C01, K01), (A02, B02, C02, K02), (A04, B04, C04, K04) for various 

values of  by taking 2 = 1 and = 0.5, – 0.5 

 

 5.0 6.0 7.0 8.0 9.0 10.0 

 = 0.5 A01 

B01 

–C01 

K01 

A02 

B02 

C02 

K02 

–A04 

B04 

C04 

K04 

0.0607 

0.4580 

0.0003 

0.0183 

0.1889 

0.4782 

0.0110 

0.0346 

47.605 

93.921 

0.0097 

71.749 

0.0800 

0.5034 

0.0007 

0.0140 

0.2419 

0.5083 

0.0003 

0.0236 

17.986 

28.932 

0.0004 

16.369 

0.096140 

0.537070 

0.000010 

0.010960 

0.283300 

0.536100 

0.000050 

0.007600 

3912.940 

6150.740 

0.011230 

3093.010 

0.109680 

0.562830 

0.000003 

0.008790 

0.317800 

0.545800 

0.000018 

0.009300 

273.4835 

346.9285 

0.000098 

136.6345 

0.121180 

0.583150 

0.000001 

0.007200 

0.346000 

0.553400 

0.000006 

0.010100 

568.0042 

772.2964 

0.000055 

264.5873 

0.13100100 

0.59954000 

0.00000003 

0.0059900 

0.3693000 

0.5602000 

0.0000020 

0.0094000 

873.20990 

1368.0607 

0.0000191 

417.62170 
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 5.0 6.0 7.0 8.0 9.0 10.0 

 = –0.5 A01 

B01 

–C01 

K01 

A02 

B02 

C02 

–K02 

–A04 

B04 

C04 

K04 

0.1767 

0.6211 

0.0001 

0.0248 

0.4618 

0.6018 

0.0004 

0.0238 

1.2139 

2.4747 

0.0005 

2.5322 

0.18471 

0.64514 

0.00002 

0.01792 

0.48159 

0.602142 

0.000095 

0.017064 

–871.5602 

1538.3674 

0.003417 

1183.6944 

0.187930 

0.660140 

0.000004 

0.011354 

0.488780 

0.602630 

0.000022 

0.013540 

–9527.44 

16679.77 

0.055810 

19745.65 

0.198120 

0.674490 

0.000001 

0.010530 

0.507990 

0.602810 

0.000006 

0.011610 

1317.461 

2628.862 

0.002342 

2122.700 

0.020253 

0.683520 

0.000003 

0.008440 

0.516950 

0.601820 

0.000002 

0.008400 

1864.026 

3462.252 

0.000895 

2968.0067 

0.2068100 

0.6911700 

0.0000001 

0.0069000 

0.5250800 

0.6011500 

0.0000007 

0.0062800 

20379.584 

4264.6972 

0.0001876 

3664.0963 

 

Table 3. The values obtained for the constants in the solution of the second approximation by taking 2 = 

1.0 and  = 0.5 for various values of  

 

 5.0 6.0 7.0 8.0 9.0 10.0 

–S11 

T11 

–M11 

N11 

–S12 

T12 

–M12 

N12 

A14 

–B14 

C14 

–K14 

A15 

–B15 

C15 

–K15 

–A17 

B17 

C17 

K17 

0.02434 

0.000023 

0.06158 

0.055353 

6.2953 

0.008392 

2.32594 

4.6374 

53.8954 

478.0985 

0.0008934 

12.7269 

1262.8458 

8503.1004 

0.09859 

378.9452 

685.0092 

384.4462 

0.000086 

12.5865 

0.018693 

0.000005 

0.07233 

0.0523 

2.41776 

0.0012 

32.3323 

20.81466 

167.9234 

194.7376 

0.0004137 

44.7595 

3582.934 

3102.1289 

0.0032107 

1290.9943 

472.958 

429.2049 

0.000005 

80.99245 

0.007163 

0.00000072 

0.14697 

0.116255 

0.98524 

0.009457 

73.8558 

63.1957 

478.5432 

136.5863 

0.0000985 

184.4462 

8456.2248 

2278.1142 

0.02958 

3678.0912 

368.9463 

823.5032 

0.0000012 

348.6675 

0.003926 

0.000000145 

0.18543 

0.13725 

4.7233 

0.0006289 

332.0043 

173.4453 

875.0089 

97.5387 

0.00005863 

568.9432 

23378.009 

873.589 

0.008464 

5855.6600 

273.1890 

1765.7758 

0.00000094 

1585.49 

0.0009578 

0.000000073 

0.28345 

0.24009 

16.5853 

0.006833 

568.5968 

351.0607 

2437.893 

44.8875 

0.000029 

863.4458 

48564.643 

684.7895 

0.002375 

9585.1189 

184.5672 

3875.8463 

0.0000007 

4485.6853 

0.0004289 

0.0000000538 

0.42894 

0.38935 

84.7823 

0.0004478 

401.0989 

268.5867 

56675875 

12.8937 

0.00000795 

2263.4458 

89578.0908 

124.8975 

0.0007354 

24385.0092 

94.0667 

9575.8968 

0.00000023 

12375.9960 

 

Table 4. The values of Dr for different values of  and Re by taking  = 0.50,  = 10.0 and     2 = 3.0 

 

   2  1.0 3.0 

   Re 

  

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

0.0 

0.04 

0.08 

0.12 

0.16 

0.20 

1.03901 

1.03566 

1.03230 

1.02895 

1.02560 

1.02224 

1.15883 

  1.15485 

  1.15086 

1.14688 

1.14289 

1.13890 

1.27865 

1.27403 

1.26942 

1.26480 

1.26019 

1.25560 

1.3985 

1.39322 

1.38798 

1.38273 

1.37750 

1.37720 

1.5128 

1.5124 

1.5065 

1.5006 

1.4948 

1.4889 

1.1689 

1.1642 

1.1595 

1.1548 

1.1502 

1.1455 

1.3138 

1.3082 

1.3026 

1.2970 

1.2913 

1.2857 

1.4587 

1.4522 

1.4456 

1.4391 

1.4325 

1.4260 

1.6036 

1.5962 

1.5887 

1.5811 

1.5740 

1.5662 

1.7486 

1.7407 

1.7317 

1.7233 

1.7150 

1.7065 
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Fig. 2. The graph of Dr against 𝝈 taking 𝜸𝟐 = 𝟏 and 𝜷 = 0.5 

 

A graph of drag Dr against  is drawn in Fig. 2 for various values of  by taking 2 = 1 and  = –0.5. It reveals 

that drag reduces with lead of  i.e. with the departure of the shape of spheroid from that of a sphere. The drag 

on the oblate porous spheroid due to moving fluid increases with the lead of , i.e. it reduces with the lead of 

parameter of  permeability of porous medium. The graph of the drag Dr  against the departure of the shape of the 

spheroid  for different values of Reynolds number has been plotted in Figs. 3 &  4 which show that the drag on 

the spheroid increases with the increase of large as well as small values of Reynolds number and decreases with 

the increase of.  The values of the drag Dr for various values of parameter of departure of the shape of 

spheroid  and Re have been given in Table 4 for 2 = 1.0, 3.0,  = 0.5 and  = 10.0. This table represents that 

the drag leads with the lead of Re and 2 but decreases with the lead of . Though the formula (86) for the drag 

is presume valid for little rates of  but in fact it is supposed to be exact for even huge withdrawal from the 

sphere structure (see, Happel and Brenner 1965). 

 

5 Conclusions 
 

The main objective is to study of the flow of viscous fluid past a porous oblate spheroid at a small Reynolds 

number, and for this purpose the perturbation technique is used. Here the graph of drag Dr  against departure of 

shape of spheroid  for different values of Reynolds number has been plotted in Figs. 3 &  4 which represent 

the drag on the spheroid leads with the lead of small values of  Reynolds number and lacks with the leads of , 

which is given in Fig. 3 and Fig. 4. In the Fig. 2 which represents the drag reduces with rise of the  i.e. with the 

change of the shape of the spheroid from that of a sphere. Here the drag on the oblate porous spheroid due to 

flow of fluids leads with the lead of , i.e. it lacks with the leads of the permeability parameter of the porous 

materials. The application of a viscous fluid flowing past a porous oblate spheroid at a small Reynolds number 

is to solve the problem of uniform steady viscous flow over an oblate in the low range of Reynolds number. 

Some applications of the Reynolds number included the calculation of friction factor and drag in internal and 

external flow, hydraulic study, aero foil design, filtration technology, geothermal energy, and precipitation. 
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Fig. 3. The graph between Dr against ∈ and the variation of Reynolds Number 

 

 
 

Fig. 4. The graph between Dr against ∈ and the variation of Reynolds Number 
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