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ABSTRACT 
 

The Study evaluates the performance of supervised and unsupervised classification techniques for 
crop identification using Sentinel-2 imagery. Four supervised classifiers—Random Forest (RF), 
Minimum Distance (MD), Support Vector Machine (SVM), and Smile Cart (sCART)—were 
assessed, with RF achieving the highest overall average accuracy (91%) and kappa value (87%) 
across two cropping seasons. The unsupervised classification method, utilizing the Isoclustering 
algorithm, recorded an average accuracy and kappa value of 84% in the first season and 80% in 
the second season. Acreage estimation revealed RF to be the most reliable, estimating 69,000 
hectares (2019-20) and 64,000 hectares (2020-21), closely aligning with district statistical yield 
data. In contrast, sCART and SVM classifiers demonstrated lower accuracies of 46% and 36%, 
respectively. The study underscores RF's superiority in crop identification and acreage estimation, 
offering valuable insights for agricultural planning and management. 
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1. INTRODUCTION 
 

Numerous factors, such as population growth, 
increased biofuel consumption, and rising 
demands for dairy and meat products, will 
significantly shape the future of global agriculture 
(Godfray et al., 2010; Tilman et al., 2011). These 
challenges loom ahead due to widespread 
reports of yield stagnation in various cereal 
crops, including rice, wheat, and maize. 
Projections indicate that global food demand will 
double by 2050. Recent global crop production 
has fallen short of meeting these anticipated 
demands, prompting us to question which 
geographic regions are best suited to generate 
bountiful harvests that can satisfy the needs of 
our growing population (Finger, 2010; Jiao et al., 
2016; Peltonen-Sainio et al., 2009). Researchers 
from around the world have consistently noted 
the issue of yield stagnation in various cereal 
crops.  
 

Monitoring crops plays a crucial role in numerous 
agricultural and ecological applications 
(Harfenmeister et al., 2021; Prudente et al., 
2019). These applications encompass estimating 
crop yields, warding off disease and insect 
infestations, applying fertilizers, and effectively 
managing water resources. The identification and 
prediction of phenological stages supply 
indispensable insights for precision agriculture 
(Dineshkumar et al., 2019). Delving into specific 
phenological stages can optimize schedules for 
irrigation and fertilizer application. Certain 
phenological stages exhibit heightened 
susceptibility to pests and diseases; thus, 
foreseeing and pinpointing these stages can 
forestall pest outbreaks, curbing the need for 
excessive pesticide usage (Lopez-Sanchez et 
al., 2012). Furthermore, phenological stages can 
serve as indicators of the impact of global 
warming on terrestrial ecosystems. (Franko et 
al., 2007; Jones et al., 2003; Keating et al., 2003) 
In pursuit of maximizing crop yields, numerous 
researchers have delved into exploring the 
intricate connection between crop development 
and its environmental conditions. They have also 
pioneered the creation of crop models aimed at 
replicating the intricate dynamics of crop growth 
(Nendel et al., 2011). Over the course of nearly 
four decades, (Steduto et al., 2009; Stöckle et 
al., 2003) these crop models have evolved 
significantly, progressing from their early 
qualitative representation of crop development to 

their present capability of quantitatively mirroring 
crop growth. Furthermore, they have transitioned 
from solely simulating individual physiological 
and ecological growth aspects to encompassing 
the entire continuum of the growth process. 
 

The recent availability of Synthetic Aperture 
Radar (SAR) Sentinel-1 (S-1) and optical 
Sentinel-2 (S-2) sensors has opened up a 
distinctive opportunity for regular, high-resolution 
crop monitoring. These sensors capture image 
time-series at a high temporal frequency, with 
intervals ranging from 5 to 12 days, contingent 
on the acquisition mode and geographic location. 
Additionally, they provide high spatial resolution, 
featuring 2.3 meters and 13.9 meters in the 
range and azimuth directions for S-1 bands, and 
spatial resolutions of 10, 20, and 60 meters for S-
2 bands. The added advantage is that S-1 & 2 
data are freely accessible under an open license 
(Felegari et al., 2021). 
 

The information on crop area statistics is 
backbone of agricultural statistical system of 
which reliable and timely information on crop 
area is of great importance to planners and 
policy makers. This information is useful for 
efficient and timely agricultural development and 
making important decisions with respect to 
procurement, storage, public distribution, export, 
import and other related issues. Crop yield 
estimates are generally portrayed as the product 
of two components: area to be harvested and 
expected yield per unit area (You et al., 2014). 
Making timely and accurate regional predictions 
of crop yield is of great importance for 
agricultural management and food security 
warning purposes (Piao et al., 2010; Fritz et al., 
2018). Applications of remote sensing technique 
in crop acreage estimation has becoming 
increasingly demanding and dominating in India 
(Mosleh et al., 2015) due to low cost and this 
approach with combination of ground truth data 
will retrieve the best area estimate. Several 
techniques have been adapted for crop 
estimation using aerial photographs and satellite 
images, including: pixel count (Gallego et al., 
2014), supervised classification (Kussul et al., 
2017), Bayesian/fuzzy classification and spectral 
un-mixing (Mann & Joshi, 2017) and area frame 
sampling (Pradhan, 2001; Boryan et al., 2017). 
Wu and Li (2012) studied crop planting and type 
proportion method for crop acreage estimation of 
complex diverse agricultural landscapes. 
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Thus, obtaining reliable information on crop 
classification and acreage in the mixed cropping 
situation is of paramount importance for farming 
policies regarding import/ export, procurement, 
storage etc. However, the use of satellite data for 
identification of various crop under multiple 
cropping system is limited, against this backdrop, 
the present study was undertaken to evaluate the 
crop classification and acreage of wheat crop in 
Anand district. 

 
2. MATERIALS AND METHODS 
 
2.1 Study Area  
 
The study area was in Anand (latitude 22° 35' N, 
longitude 72° 58' E), Gujarat, India, as shown in 
Fig. 1. The area is under Middle Gujarat Agro 

Ecological Situation Zone, Zone-III. During the 
winter/rabi (November to March), mean monthly 
maximum and minimum temperature varies from 
20° to 36°C and 7° to 20°C, respectively. Normal 
annual rainfall of the location is 882 mm, of which 
maximum amount of rainfall is received during 
June to September (south west monsoon) and 
meagre rain is receives during rabi season.  

 
2.2 Remote Sensing Classification 

Methods 
 
Crop classification was conducted using the 
different approaches (Table 1) to analyse land 
use and land cover patterns. Both supervised 
and unsupervised classification techniques were 
employed to achieve accurate and meaningful 
results.

 

 
 

Fig. 1. Test site location, Anand district of Gujarat (India) 
 

Table 1. Methods used for cropland classification 
 

Classification Type Method Validation 

Supervised 
Classification 

Random Forest (RF) Validated using ground truth data, demonstrating 
high accuracy and robustness. 

 Support Vector 
Machine (SVM) 

Validated with ground truth data, performing well 
on nonlinear and complex datasets. 

 Minimum Distance 
(MD) 

Validated with ground truth data, demonstrating 
higher accuracy.  

 SmileCart (sCART) Validated using ground truth data, providing 
reliable results with optimized parameters. 

Unsupervised 
Classification 

K-Means Clustering  Validated with ground truth data through visual 
inspection and comparisons with existing maps. 
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Using both trained and unsupervised techniques, 
a multilayer satellite input image is transformed 
into a single-layer thematic map for classification. 
While unsupervised classification groups pixels 
according to spectral value similarity, as 
illustrated in technique flowcharts (Figs. 2 and 3), 
supervised classification depends on user-
selected sample pixels (training sites) that direct 
the software in classifying all image pixels. 
Google Earth Engine (GEE) was used to pre-
process the sentinel data for this study in order to 
exclude cloud cover and compute indices like 
NDVI and NDWI. NDVI, SAVI, NDBI, and NDWI 
indices were added to 30-meter-resolution 
seasonal composite images for the rabi wheat 
seasons (2019–20 and 2020–21) in order to 
increase mapping accuracy. Random Forest 
(RF), Support Vector Machine (SVM), Minimum 
Distance (MD), and Smile CART (sCART) were 
used for classification. 
 

High-resolution Google Earth imagery and 
ground truth data from the Anand region were 
utilized to create training sites, of which 70% 
were used for training and 30% for validation. 
Both years' classifications included six land-use 
classes: urban, water, forest, wheat, and fallow 
land. SVM employed a radial basis function 
(RBF) kernel with a gamma value of 0.075, and 

RF had 100 decision trees. For wheat, the 
training site points were 70 for the 2019–20 
season and 60 for the 2020–21 season. The 
sample proportions were based on the land-use 
area. By guaranteeing strong classification 
results, these strategies demonstrated the 
relative advantages and disadvantages of each 
technique. 

 
2.3 Training Data Collection 
 
Training datasets were derived from high-
resolution Sentinel-2B imagery. Six land-use 
classes were defined: Urban, Water, Forest, 
Wheat, Fellow Land, and Tobacco/Other Crops. 

 
2.4 Classification Accuracy Assessment 

and Statistical Validation 
 
The accuracies of the pixel- and object-based 
classifications obtained were evaluated in terms 
of overall accuracy, producer's accuracy, user's 
accuracy metrics (Congalton, 1991), and kappa 
coefficient (Cohen, 1960). The validation 
samples available for study area are shown in 
Table 2. The classification results were validated 
through ground truth data, visual interpretation, 
and comparisons with existing authoritative data. 

 

 
 

Fig. 2. Methodology flowchart used for supervised image classification using GEE 
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Fig. 3. Methodology flowchart used for unsupervised image classification using ArcGIS 
 

Table 2. Number of training and validation samples, for each class investigated 
 

Class 2019-20 2020-21 

Urban 161 170 
Water 117 117 
Forest 100 100 
Wheat 100 100 
Fellow Land 50 50 
Tobacco and Other Agricultural Crops 160 160 

 

3. RESULTS AND DISCUSSION 
 

3.1 Supervised Classification of Cropland 
using Sentinel-2 Data 

 

Supervised classification methods were applied 
for the years 2019-20 (first year of 
experimentation) and 2020-21 (second year of 
experimentation). Classifier performances were 
assessed based on accuracy percentages (Table 
4). Fig. 4 illustrate the classification results for 
Random Forest (RF) for wheat, which achieved 
approximately 90% accuracy in most parts of the 
Anand region. However, areas such as 
Khambhat and Bhal showed some 
misclassification, particularly between aestivum 
and durum wheat, likely due to variations in 
spectral properties. Additionally, in 2019-20, 
some wheat spectral properties were 
misclassified as barren land or, to a lesser 
extent, water bodies. 
 

Across both years, RF, MD, and SVM performed 
well in classifying wheat due to the dense 

plantations exhibiting similar reflectance patterns. 
While in sCART misclassifications occurred near 
barren land, other agricultural crops, and forests, 
as evident in classifier results. Water bodies, 
forests, barren land, and built-up areas were 
correctly classified by RF and other algorithms. 
The sCART algorithm misclassified different 
classes for wheat, tobacco, water bodies, built-up 
areas, barren land, and forests for both years, 
outperforming other methods. For SVM, wheat 
was misclassified as other vegetation, barren 
land, or built-up areas. Similarly, MD effectively 
classified most regions but misclassified forests 
and certain built-up areas, as reflected in its 
confusion matrices. 

 
The classification changes across the years 
2019-20 and 2020-21, as derived from Sentinel-2 
images, are presented in Figs. 4 to 7, 
demonstrating the performance of different 
algorithms. For all methods from the two years, 
the RF classifier performed well in comparison to 
the other classifiers i.e., SVM, MD and sCART. 
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Fig. 4. Supervised classification map of wheat using random forest classifiers for year 2019-
20 and 2020-21 

 

  
 

Fig. 5. Supervised classification map of wheat using support vector machine (SVM) 
classifiers for year 2020-21 and 2020-21 

 

  
 

Fig. 6. Supervised classification map of wheat using minimum distance classifiers for year 
2019-20 and 2020-21 
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Fig. 7. Supervised classification map of wheat using smile cart (sCART) classifiers for year 
2020-21 and 2020-21 

 

  
 

Fig. 8. Unsupervised classification map of wheat using iso-clustering classifiers for year 
2019-20 and 2020-21 

 

3.2 Unsupervised Classification of 
Cropland Using Sentinel-2 Data 

 
The sentinel satellite images pertaining to Anand 
district were also classified based on 
unsupervised classification method using Iso 
clustering approach (Venables & Ripley, 2002). 
In the unsupervised classification method, pixels 
were classified based on spectral values only 
without any ground truth information. The area 
which was classified as water body and other 
class by the supervised classification method has 
now been classified as wheat class by 
unsupervised classification technique. 
 
In the unsupervised classification output (Fig. 8) 
of Anand district, result shows. the mask of the 
area of study which shows wheat vegetation of 

district in rabi season shows the spatial 
distribution of the crop. Wheat observed to be the 
major crops in Anand district, as it classified has 
the major coverage in the district during rabi 
season 2019-20 and 2020-21. 

 
In the Anand district, the results of the 
comparison between supervised and 
unsupervised classification methods revealed 
that the supervised approach resulted in greater 
accuracy. The difference in accuracy between 
the two methods were found to be the least in the 
first and second seasons, respectively. The 
supervised classification had an overall accuracy 
of above 90 % while the unsupervised 
classification had an overall accuracy of 85 %. 
Thus, random forest method is much more 
capable in crop classification and identification 
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for supervised classification while iso             
clustering classifier performed reasonable              
in crop classification for both years of 
experimentation. 

 
3.3 Acreage Estimation 
 
Remote sensing has significant potential for 
estimating acreage and identifying different 
classes. After classifying the image using 
supervised and unsupervised techniques, 
aggregation was performed to estimate the 
wheat area for both study seasons. The wheat 
area was calculated by multiplying the spatial 

resolution by the number of pixels, as detailed in 
Table 3. 
 

3.4 Classification Accuracy Assessment 
and Statistical Comparison 

 
Classification methods yield different results 
when applied to the same data. In this study, we 
calculated accuracy matrices—Kappa coefficient, 
producer’s accuracy, user’s accuracy, and 
overall accuracy—using confusion matrices 
derived from training and validation sample 
points. Pixel-based algorithms used confusion 
matrices based on pixel counts. 

 
Table 3. Area of wheat in Anand district 

 
Sr. No. Classifiers 2019-20 2020-21 

Estimated 
Area (ha-1) 

Reported 
Area (ha-1) 

Estimated 
Area (ha-1) 

Reported 
Area (ha-1) 

01 RF  68996 61000 64255 58000 
02 MD 77263 61000 73568 58000 
03 SVM 84364 61000 81626 58000 
04 sCART 115549 61000 98236 58000 
05 Isoclustering 74253 61000 69258 58000 

 
Table 4. Accuracy and the kappa of the classifiers for two seasons of the study 

 
Year Classifier Overall Accuracy Kappa Coefficient 

2019-20 RF 92% 0.88  
SVM 77% 0.77  
MD 86% 0.76  
sCART 83% 0.70  
Iso-cluster 86% 0.82 

2020-21 RF 90% 0.86  
SVM 74% 0.65  
MD 84% 0.79  
sCART 86% 0.82  
Iso-cluster 85% 0.76 

 
Table 5. Users’ accuracy of based on the stacked images for supervised classification 

 
Year Classifier Urban Water Forest Wheat Tobacco & Other 

Crops 
Fellow 
Land 

2019-20 RF 1.00 1.00 0.95 0.94 0.90 1.00  
SVM 1.00 0.97 0.85 0.61 0.87 0.46  
MD 1.00 0.98 0.82 0.88 0.89 1.00  
sCART 0.98 0.98 1.00 0.61 0.81 0.40  
Iso-clustering 1.00 0.98 0.90 0.84 0.84 0.88 

2020-21 RF 0.99 1.00 0.99 0.93 0.88 0.89  
SVM 0.97 0.97 1.00 0.98 0.83 0.25  
MD 0.98 0.98 0.81 0.98 0.86 0.89  
sCART 0.98 0.97 0.99 0.55 0.81 0.67  
Iso-clustering 1.00 0.94 0.75 0.82 0.90 0.90 
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3.5 Comparison of Classifiers 
 

Table 4 summarizes the classifier performance 
for two experimental years. The Random Forest 
(RF) classifier outperformed others, with the 
highest overall accuracy (92% and 90%) and 
Kappa values (88% and 86%) for 2019-20 and 
2020-21, respectively. Iso-clustering achieved 
86% and 85% overall accuracy, with Kappa 
values of 82% and 76%. 
 

3.6 User's Accuracy 
 

User’s accuracy for urban and water classes was 
high across classifiers due to distinct spectral 
properties. However, misclassification issues 
arose with land cover types such as wheat and 
forest, where spectral overlaps led to errors. For 
instance, wheat pixels were misclassified as 
forest or fellow land due to similar spectral 
signatures. Table 5 shows the user’s accuracy 
for different classes. 
 

3.7 Confusion Matrices 
 

The confusion matrices for 2019-20 and 2020-21 
show classification errors for each method. The 
RF classifier, despite its high overall accuracy, 
misclassified a small number of tobacco and 
other crops points. The SVM and sCART 
methods highlighted misclassification of fellow 
land, while Iso-clustering showed errors in 
classifying wheat. 
 

4. CONCLUSION AND FUTURE WORKS 
 

This study assessed various supervised and 
unsupervised classification methods for land 
cover and wheat acreage estimation in Anand 
district, Gujarat, using Sentinel-2 remote sensing 
data. Key findings include:  
 

• Supervised vs. Unsupervised 
Classification: The Random Forest (RF) 
method outperformed others, including Iso-
clustering, with the highest accuracy in 
land cover classification and wheat 
acreage estimation. 

• Accuracy Assessment: Urban and water 
classes had high accuracy due to distinct 
spectral properties. Misclassifications 
occurred between wheat and classes like 
forest due to spectral overlaps. 

• Acreage Estimation: RF and MD classifiers 
closely matched statistical yield data, with 
RF providing the most accurate acreage 
estimation. 

• Implications: Accurate wheat acreage 
estimation is crucial for crop yield 
prediction and food security planning. 
Remote sensing data combined with 
advanced classification methods offers a 
promising approach for agricultural 
monitoring. 

• Future Research: Future studies could 
explore multi-sensor data and advanced 
machine learning techniques to enhance 
classification accuracy and monitoring. 

 

In conclusion, RF demonstrated its effectiveness 
in land cover classification and wheat acreage 
estimation, highlighting the potential of remote 
sensing and machine learning for agricultural 
monitoring and informed decision-making. 
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