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Abstract

Cancer is a major health challenge. Globally, the estimated number of diagnosed cancer incidences is
approximately 14.1 million people per year and a mortality rate of 8.2 million deaths per year. The
primary objective was to develop robust predictive models to forecast prostate cancer incidences and identify
significant trends and patterns that inform healthcare planning and interventions in Meru County Kenya
using AutoRegressive Integrated Moving Averarge with exogeneous variable (ARIMAX) Models.The dataset
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used comprised historical records of prostate cancer incidences in Meru County. The data spaned from [Jan
2018] to [Nov 2023], providing a comprehensive overview of the trends over time. Additionally, exogenous
variable age was included in the ARIMAX model to enhance the accuracy of the prostate cancer predictions.
Data on the prevalence of prostate cancer was obtained from Meru Cancer Registry for 71 months.The
ARIMAX model was fitted using the Box-Jenkins methodology which include four iterative steps that is
model identification,parameter estimation, diagnostics and forecasting.The prostate cancer time series data
was made stationary by differencing and log transformation. R programming (Version 4.3.3) software was
used in the analysis. Further, given the highly sensitive nature of the forecast values, interpolated data from
daily values to monthly values were used. The best models for the Prostate cancer incidences was ARIMAX
(0,0,1). Majority of the Prostate cancer incidences were within the age group 70-79 years at 50.7%,ages 60-69
was 42.3% while 80-90 years was 7%. After log transformation and and differencing of the prostate cancer
time series data the Augmented Dickey Fuller test was performed and the p-value was (0.01) which was less
than the significance level of (0.05), the null hypothesis was rejected that the prostate cancer time series had a
unit root. Therefore, there was sufficient evidence to conclude that the time series was stationary. Ljung-Box
test checked for the presence of autocorrelation at multiple lags and a high p-value = 0.719 greater than 0.05
indicated that there is no significant autocorrelation remaining in the residuals, thus the ARIMAX model
was adequate. The MA(1) coefficient was -0.9, which indicated strong short-term negative autocorrelation. A
positive value of 0.587 suggested that as the external variable increases by one unit, the log-transformed and
differenced prostate cancer monthly cases (lnPCa Monthlycases d1) were expected to increase by 0.5871 units,
holding all else constant. Results show that the ARIMAX(0,0,1) model slightly outperformed the ARIMA
(0,0,1) model.This study successfully modeled the trends of prostate cancer incidences in Meru County using
ARIMAX models. The findings indicated a rising trend in incidences, with the ARIMAX model providing
the most accurate forecasts by incorporating the external variable age.

Keywords: ARIMA; ARIMAX; stationary; autocorrelation; forecasting; prostate cancer.
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1 Introduction

Cancer is a major health challenge. Globally, the estimated number of diagnosed cancer incidences is approximately
14.1 million people per year and a mortality rate of 8.2 million deaths per year. Cancer is a leading cause of
premature death for persons between the ages 30–69 years in 134 of 183 countries, (Sung et al., 2021).

According to the Global Cancer Observatory statistics, lung cancer, prostate cancer, and colorectal cancer are
the top three cancer types with high age-standardized cancer incidence and mortality rates in 2022. Cancer
accounted for around 10 million mortalities, which is equivalent to one in six deaths (Chanu and Singh, 2022).

Concurrently, cancer has a significant economic and financial burden to society, (Tudor, 2022). The increasing
burden for cancer prevention and reduction in mortality is a major public health concern. Primary cancer
prevention includes the interventions made to reduce the incidence of cancer while secondary prevention is the
efforts made to reduce second cancers among cancer survivors.

Mathematical models are used in the modeling of disease interactions within populations. Within the context of
resource constraints, mathematical modeling can increase understanding and result in better policies toward
the implementation of effective strategies that would compound better health and economic benefits. In
addition, mathematical models are essential in guiding policymakers in resource allocation and control strategies.
Furthermore, the strand of literature on cancer research, particularly with a focus on Kenya, remains thin.
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Hence, whereas most related research focus on developed countries, the current research contributed to filling
the literature void and is thus concerned with a rather under-investigated county like Meru County. This county
constitutes an interesting field for cancer research due to divergent trends.

According to (Sung et al., 2021), 8.2 million people die from cancer each year and 14.1 million people are
anticipated to be diagnosed globally. Cancer surveys in low-income countries and high-prevalence settings are
typically cross-sectional and independently implemented about once every five years, in contrast to high-income
countries where longitudinal studies, such as the National Health and Nutrition Examination Survey, provide
nationally representative trend estimates for health outcomes.

When modeling cancer data, inappropriate or restrictive assumptions can have a negative impact on the
outcomes, which can therefore make it more difficult to use those outcomes.It is against this backdrop that
ARIMAX model which includes an external variable age was used. Accurate prostate cancer projections for
future time points are paramount for both primary and secondary prevention and are additionally critical for
planning future prostate cancer services and resource allocation, as well as establishing and evaluating prostate
cancer control programs.

2 Review of Related Literature

According to (Earnest et al., 2019) in a study on forecasting annual incidence and mortality rate for prostate
cancer in Australia until 2022 using Autoregressive Integrated Moving Average (ARIMA) models, the results
indicated that among the various models evaluated, the model with one autoregressive term (coefficient=0.45,
p=0.028) as well as a differenced series provided the best fit, with a Mean Average Percentage Error(MAPE) of
5.2% and an external validation showed a MAPE of 5.8%. The study projected prostate cancer incident cases
in 2022 to rise to 25,283 cases (95%, Confidence Interval: 23,233 to 27,333).

(Wangdi et al., 2010), used ARIMA model to forecast the number of cases of malaria in endemic areas of
Bhutan and further employed the ARIMAX model to determine the predictors (meteorological factors). Their
findings revealed that the mean maximum temperature lagged at one month was a strong positive predictor of
an increased malaria cases for four out of seven districts under study.

A Study by (Li et al., 2022) on time series models show comparable projection performance with joint point
regression: A comparison using historical cancer data from World Health Organization, they found out that
ARIMAX stood out, attaining the least percentage error in five out of seven cancers. With reference to a single
weighted average, ARIMAX yielded the least MSEs or percentage errors in five out of six scenarios. Based on
their findings, ARIMAX was relatively superior to the other two methods that is joint point regression and
(Average Annual Percentage Change (AAPC) approaches (Li et al., 2022).

(Lazam et al., 2023) conducted a study to forecast the incidence rates of top three cancers in Malaysia. The aim
was to determine the best model between Box-Jenkins ARIMA and exponential smoothing in forecasting the
incidence rates. The model with the least Mean Absolute Percentage Errors (MAPE) value, was determined as
the best model and used to forecast the top three cancer incidences for the year 2017 to 2021. Results showed
that the Exponential Smoothing model predominantly outperformed the ARIMA model.

According to (Luo et al., 2023) while using ARIMA and ARIMAX models to predict the incidence of scarlet fever
in China using data from the National Health Commission of the People’s Republic of China between January
2011 and August 2022, the results indicated that average monthly incidence of scarlet fever was 4462.17 (SD
3011.75) cases, and annual incidence exhibited an upward trend until 2019. The ARIMAX models outperformed
the ARIMA models and had better prediction performances with mean absolute errors indicating smaller values.
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According to (Dizon and Kamal, 2024), the risk of suffering from prostate cancer increases with age with men
above the age of 50 years having an increased risk. However, prostate cancer is one of the most treatable
cancers if detected early. The introduction of prostate-specific antigen (PSA) screening almost 3 decades ago
was followed by a substantial reduction in prostate cancer incidence, as well as a reduction in prostate cancer-
specific mortality. According to (Sung et al., 2021) the overall pooled incidence of prostate cancer in Africa was
21.95/ 100,000 population, with a median incidence of 19.47/100,000 population.There is a 3% annual growth
in the incidence rate of prostate cancer in the world.

According to (Kobia et al., 2019) the most prevalent cancer in men in Meru County were the prostate (18%),
stomach (17%), esophagus (14%), head (12%), liver (8%) and colorectum (5%)., a finding that concurs with a
study carried out by(Pathirana et al., 2022) which found out that prostate cancer is most common type of cancer
in men above 65 years of age in USA. The study established that 84.21% of prostate cancer cases occurred in
males above 55 years old. Older population has the greatest risk of prostate cancer.

The exact prostate cancer causes are not known (Vickers et al., 2013) but the widely accepted risk factors are
family history and age. Age is deemed a major risk factor of prostate cancer. According to (Vickers et al.,
2013),one out of six men have a likelihood of developing prostate cancer in their lifetime in the USA. Prostate
incidence for men aged over 50 years is greater than 30%, increasing to approximately 80% for persons above 80
years. The study showed that show that 96% of prostate cancer cases occur in men aged 55 years and above.

3 Methodology

A descriptive cross-sectional design was used which utilized aggregated monthly prostate cancer cases. The
secondary data was collected from the Meru Cancer Registry. Monthly data from January 2018 to November
2023 was obtained due to the need for uniformly and consistently measured data. The Meru Cancer Registry,
situated within the Imenti North Constituency of Meru County, operates at coordinates approximately 00 02’
46” N latitude and 370 39’ 21” E longitude.The sample included the prostate cancer incidences in Meru County.

3.1 Model development of time series data

An ARIMAX model was built on the dependent variable in this case the incidence of prostate cancer. To
determine the appropriateness of the models and to substantiate the validity of the proposed modeling framework,
the Akaike Information Criterion (AIC) and the Mean Absolute Percentage Error (MAPE) was used. An
ARIMA(p,d,q) model is given as:

Yt = α1Yt−1 + α2Yt−2 + · · ·+ αpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (3.1)

Where Yt is a given time series and εt is a white noise process.

The ARIMAX model is expressed as;

Yt = βXt + α1Yt−1 + α2Yt−2 + · · ·+ αpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (3.2)

Where Yt is the incidence of prostate cancer.

Where Xt is a co-variate at time t and β is its coefficient.

The Xt represents exogenous/external variable (X1 = age)

The model development of ARIMAX consistes of two stages namely, parameters estimation and model identification.
The first stage was to estimate the non-seasonal (p,d,q) and seasonal (P,D,Q) parameters, where p is the order
of autoregressive (AR) component, d is the degree of differencing of the original prostate cancer time series data
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and q is the order of the MA component (Box et al., 2015). These were determined by the autocorrelation
function (ACF) and partial autocorrelation function (PACF). In the parameter estimation stage, the unknown
coefficients corresponding to the AR and MA components of the ARIMA model were estimated.

The prostate cancer time series data is then split into a training and testing set using an 80:20 ratio.The
ARIMAX (0,0,1) model was generated using the auto.Arima() function models where the best ARIMA model
based on Akaike information criterion (AIC) is obtained (Coghlan, 2015) . The series was tested through the
Augmented Dickey-Fuller test. Differencing of the ARIMAX series was conducted. Based on the final selected
model, the annual number of cases expected to be diagnosed in Kenya from 2024 to 2026 was forecasted. The
95% confidence intervals was calculated from the mean square errors of the ARIMAX model.

The ADF test is used to determine whether a time series is stationary by testing for the presence of a unit root.
The ADF test is an extension of the Dickey-Fuller test, which accounts for higher-order autoregressive processes.
The test involves estimating the following regression:

The model equation ∆yt = α + βt + γyt−1 + δ1∆yt−1 + δ2∆yt−2 + . . . + δp∆yt−p + ϵt represents a time series
model, where:

� ∆yt is the first difference of yt (yt − yt−1).

� α is a constant.

� β is the coefficient on a time trend

� γ is the coefficient on yt−1.

� δi are the coefficients on the lagged differences of yt.

� ϵt is the error term.

Null Hypothesis H0: The series has a unit root, alternative Hypothesis H1: The series does not have a unit root.

3.2 Model identification of time series data

The model was specified and selected by plotting the ACF and PACF at different lags (Hyndman, 2020).
The model are initially identified by plotting the autocorrelation coefficient (ACF) and partial autocorrelation
coefficient (PACF) of the prostate cancer time series data.The Autocorrelation plot was used to obtain the order
of the MA process, while the Partial Autocorrelation plot was used to obtain the order of the AR process (Filder
et al., 2019).

Table 1. Model Identification using the ACF and PACF

ACF/PACF AR MA ARMA

ACF Tails off Cuts off at lag q Tails off
PACF Cuts off at lag p Tails off Tails off

The data has to satisfy the stationarity condition that is the mean, variance and autocorrelation have to be time
invariant.

3.3 Parameter Estimation of Time Series Data

In order to estimate the ARIMAX model, the Maximum Likelihood Method (MLE) was used. With the
assumption of identically and independently distributed εt, the Log Likelihood (LL) function of yt for t observations
sample (Shumway and Stoffer, 2017).
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For an MA(1) model,

yt = µ+ ϵt + θϵt−1, (3.3)

where ϵt are identically and independently distributed (i.i.d) normal errors with mean 0 and variance σ2.

Given a time series y = (y1, y2, . . . , yn), the likelihood function, assuming ϵ0 = 0, is:

L(µ, θ, σ2 | y) =
n∏

t=2

1√
2πσ2

exp

(
− (yt − µ− θ(yt−1 − µ))2

2σ2

)
. (3.4)

Taking the natural logarithm, the log-likelihood function is:

ℓ(µ, θ, σ2 | y) = −n− 1

2
log(2πσ2)− 1

2σ2

n∑
t=2

(yt − µ− θ(yt−1 − µ))2. (3.5)

The MLE estimates for µ, θ, and σ2 are obtained by maximizing the log-likelihood function:

(µ̂MLE, θ̂MLE, σ̂
2
MLE) = arg max

µ,θ,σ2
ℓ(µ, θ, σ2 | y). (3.6)

3.4 Model diagnostics of time series data

In model diagnostics the adequacy of the selected model was determined. One of the assumptions is that the
residuals/errors are white noise. Ljung-Box statistic is used to check if a given series is linearly independent. The
test examines the null hypothesis of linear independence of the series and whether the residual series is a white
noise series. When the Ljung-Box test P value is greater than 0.05, the residual series is white noise series, that is,
the effective part of the original series is extracted sufficiently and the established model is valid. The diagnostic
checking involves the analysis of the residuals by plot of the standardized residuals, the autocorrelation function
of the residuals, and the p-values for Ljung-Box Q statistic. At this stage, the assumptions of the ARIMAXmodel
are checked, such as the hypothesis of errors being independently and normally distributed.The ARIMAX(0,0,1)
had a good fit and passed the residuals Ljung-Box .

The Ljung-Box statistic Q is calculated as:

Q = n(n+ 2)

m∑
j=1

ρ̂2j
n− j

where:

� n is the number of observations.

� m is the number of lags being tested.

� ρ̂j is the sample autocorrelation at lag j.

The Q statistic follows a chi-squared (χ2) distribution with m degrees of freedom under the null hypothesis.While
fitting the time series models(ARIMAX) to the data we compute the sample autocorrelations of the residuals
up to the specified lag m. Then the Computed Ljung-Box Q statistic is compared with the critical value from
the chi-squared distribution with m degrees of freedom.

If the Q statistic is greater than the critical value, reject the null hypothesis, indicating that there is significant
autocorrelation in the residuals. If the Q statistic is less than the critical value, fail to reject the null hypothesis,
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indicating that the residuals are independently distributed.If the test rejects the null hypothesis, it suggests that
the residuals are not independently distributed and that there is significant autocorrelation. This indicates that
the model may be inadequate and that additional lags or different model specifications might be needed. If the
test fails to reject the null hypothesis, it suggests that the residuals are independently distributed and that the
model is adequate with respect to capturing the time series dynamics. A high p-value (greater than .05) suggests
that there is no significant autocorrelation remaining in the residuals, indicating a good model (Shumway and
Stoffer, 2017).After the ARIMAX model passing the tests, we proceeded to the prediction.

3.5 Forecasting of time series data

Forecasting is the process of making a statement about events whose actual outcomes have not yet been observed
(Langat et al., 2017). The model with the minimum of MAE, MAPE or RMSE, MSFE is considered to be the
best for forecasting. If we have a perfect forecast then MAE=MSE=RMSE,MSFE=0. The smaller the value
the better the prediction and the greater the value the poorer the predictive power of the model (Hyndman and
Koehler, 2006).

The ARIMAX (p, d, q) model equation for time series Yt and exogeneous data Xt is;

△Yt = εt +

p∑
i=1

△ψiYt−i +

q∑
j=1

θjεt−j +

M∑
m=1

βmXt−m (3.7)

where, ψ1,· · · , ψp and θ1,· · · , θq are the parameters; εt ,εt−1are white noise error and β1,· · · , βm are the
parameters of independent variables input Yt and time t.

The equation for RMSE, MAE, and MAPE are given by:

MAE =
1

2

n∑
i=1

|Pi −Oi| (3.8)

MAPE =
1

n

n∑
i=1

|Oi − Pi

Oi
| ∗ 100 (3.9)

RMSE =

√√√√ 1

n

n∑
i=1

(Pi −Oi)2 (3.10)

where Oi is the observed value, Pi is the predicted value and n is the number of observations.

3.6 Back transformation of time series data

Back transformation of time series data after log transformation and differencing is a critical step in time series
analysis, particularly when dealing with non-stationary data or when applying transformations to stabilize
variance or achieve linearity. This process involves reverting the transformed data back to its original scale to
interpret the results or make forecasts in the original units.To revert the log-transformed data back to its original
scale, exponentiation was applied to each observation.To revert the differenced data back to its original scale,
cumulative sum (integration) was applied to the differenced series (Box et al., 2015).

4 Results and Discussion

4.1 Age distribution of the prostate cancer patients

According to the American cancer society about 6 in 10 cases are diagnosed in men aged 65 or older, and the
average age at the time of diagnosis is around 66 years.
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Fig. 1. Age groups

Majority of the cases were within the age group 70-79 years at 50.7% age 60-69 was 42.3% while 80-90 years was
7%. Age influences the screening and detection of prostate cancer. Screening tests such as the prostate-specific
antigen (PSA) test are more commonly recommended for men aged 50 and older, or earlier for those at higher
risk due to family history or other factors. Increased screening in older age groups led to more diagnosis of
prostate cancer cases, (Li et al., 2022).

4.2 Time series plot for prostate cancer cases

Time series plots display observations over time.

According to Fig. 2, the prostate cancer cases ranged from 1 to 12 monthly cases in Meru County. The time series
plot was fairly centered around the mean value of the number of prostate cancer incidence cases.Prostate cancer
rates showed an increasing upward trend over the years.An essential aspect of selecting suitable modeling and
forecasting techniques involves examining the patterns displayed in time series plots. These patterns typically
stem from four main sources of variation within time series data: seasonal variations, trend variations, cyclic
changes, and residual/ irregular fluctuations.

The time series of prostate cancer reported cases was plotted to observe long-term trends from January 2018
to November 2023. Data stationarity was tested using the augmented Dickey-Fuller (ADF). the non-stationary
sequence was transformed into stationary sequences by difference and log transformation. Subsequent natural
logarithm transformation and first differencing rended the modified time series stationary, as evidenced by the
test results.

Table 2. Augmented Dickey-Fuller Test of Differenced log transformed prostate cancer
incidences data

Dickey-Fuller value Lag order p-value

-6.4612 4 0.01

Since the p-value (0.01) is less than the significance level (typically 0.05), we reject the null hypothesis that the
time series has a unit root. Therefore, we have sufficient evidence to conclude that the time series is stationary.It
suggests that the Differenced log transformed prostate cancer incidences time series data in Meru County does
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Fig. 2. Time series plot of prostate cancer incidences

Fig. 3. Model Decomposition prostate cancer incidences
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not exhibit a unit root and is stationary, which is a prerequisite for fitting ARIMAX model effectively. This
implies that trends and patterns observed in the data are likely to be reliable and are not due to non-stationarity,
hence proceeding with proceed with ARIMAX modeling knowing that the basic assumption of stationarity is
satisfied.

4.3 Model identification for prostate cancer incidence data

The correlogram (Fig. 4) shows the ACF of the differenced-log transformed data.

Fig. 4. Autocorrelation of Differenced log transformed prostate cancer incidences data

According to the Fig. 4 a correlogram of the Autocorrelation function of the Difference log transformed prostate
cancer incidences data the ACF had a significant spikes at lag 1, indicating a non seasonal MA(1) component.
The correlogram (Fig. 5) shows the PACF of the differenced-log transformed data.

From the Fig. 5 a correlogram of the Partial Autocorrelation function of the Difference log transformed prostate
cancer incidences data the PACF had exponential decay.

4.4 Parameter estimation and selection of the ARIMAX model for prostate
cancer incidence data

This involves the estimation of parameters of different models using identification process and proceeds to the
selection of the model using information criteria. The best ARIMAX model with the lowest Akaike Information
Criteria (AIC) was selected.

Table 3. Comparison of ARIMAX models with corresponding AIC values

Model AIC

ARIMAX(0,0,1) 169.8
ARIMAX(0,1,1) 201.35
ARIMAX(1,1,1) 194.03
ARIMAX(1,0,1) 175.21
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Fig. 5. Partial Autocorrelation of Differenced log transformed prostate cancer incidences data

From Table 3, ARIMAX (0,0,1) had an AIC value of 169.8, ARIMAX (0,1,1) had an AIC value of 201.35,ARIMAX
(1,1,1) had an AIC value of 194.03 and ARIMAX (1,0,1) had an AIC value of 175.21. Thus ARIMAX (0,0,1)
was chosen as the best . The summary results of the ARIMAX

Table 4. ARIMAX(0,0,1) model coefficients and error measures

Coefficients Estimate heightStandard Error (s.e.)
ma1 -0.8975 0.0626
xreg 0.5871 1.2578

Model Statistics height
σ2 0.6123
Log Likelihood -81.96
AIC 169.92
AICc 170.28
BIC 176.66

Training Set Error Measures height
ME 0.0467
RMSE 0.7712
MAE 0.6437
MPE NaN
MAPE Inf
MASE 0.6646
ACF1 0.1250

The estimated coefficient was (ma1 = -0.8981) for the MA(1) term. A negative coefficient close to -1 suggested
that the series has strong short-term negative autocorrelation. That is the last forecast error was positive, the
model expects the next value to be lower, and vice versa. The Standard Error was (s.e.) = 0.0632 where this
is precision of the estimated MA1 coefficient. A relatively small standard error indicated that the estimate was
precise. This ARIMA(0,0,1) model with a negative MA(1) coefficient captures short-term fluctuations in the
differenced log-transformed series of prostate cancer cases.
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This model was an ARIMA(0,0,1) model with an additional regression term (indicated by xreg). It combined
a linear regression component with an ARIMA model to capture the residual patterns in the data that the
regression alone cannot account for. The coefficient for the external variable (age) suggests a positive relationship
with the response variable. Specifically, for each unit increase in xreg, the log-transformed and differenced
prostate cancer monthly cases are expected to increase by 0.5871 units, holding other factors constant.

4.5 Diagnostics and evaluation of the ARIMAX model for prostate cancer
incidence data

ARIMAX (0,0,1) was the best fit model, the model adequacy was further checked to draw empirical conclusion
regarding the model as good fit hence thus used in estimation and forecasting. Ljung Box test coupled with the
ACF, PACF, the normal Q-Q plot and histogram plots of the residuals were used in model diagnostics. The
plots showed that the residuals from the model are similar to a white noise hence the model fits the data well.
The p-value estimated by the Ljung Box test was greater than 0.05. The p-value was at 0.7096 which showed
that the residuals were random, concluding that there is no significant autocorrelation, given the p-value of
0.7192, which exceeds the conventional significance level of 0.05.

Table 5. Ljung-Box test for Autocorrelation of Residuals in the ARIMAX(0,0,1) Model

X-squared df P-value

7.0664 10 0.7096

The p-value (0.7096), (greater than 0.05), we fail to reject the null hypothesis. Therefore there is no significant
autocorrelation remaining in the residuals of the ARIMAX model. The residuals the ARIMAX model do not
show significant autocorrelation, indicating that the model is a good fit in terms of capturing the temporal
dependencies in the data. The model residuals are approximately white noise, which is a desirable outcome for
time series models.

The normal Q-Q plot the residuals of the prostate cancer time series data indicates that residuals are located on
the straight line except a few that are deviating from the normality. Hence the normality assumption is satisfied.

The points on the Q-Q plot follow a straight line.

A bell-shaped histogram indicates that residuals are normally distributed, which supports the assumption of
normality.

The residuals appear randomly scattered around zero with no clear patterns over time. Thus the model captured
the data well and that there was homoscedasticity (constant variance of residuals over time).

4.6 Forecasts of the prostate cancer incidence data

The forecast plot shows the predicted values continuing from the historical data, with reasonably narrow
prediction intervals, suggesting confidence in the predictions.The model prediction effects was evaluated through
MAE, RMSE, and MAPE.The Smaller values indicated better predictions.

Table 6. MAE,RMSE and MASE

MAE RMSE MASE

0.6437 0.7712 0.6646
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Fig. 6. Normal Q-Q plot the residuals

Fig. 7. Histogram of residuals

MAE and RMSE values are relatively close, indicating that the model’s prediction errors are fairly consistent in
magnitude.

The predicted values represented the model’s forecast, with 80% and 90% confidence intervals provide a range
of uncertainty for these predictions. The actual values were within these intervals 80% and 90% confidence
intervals.
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Fig. 8. Residual time plot

Fig. 9.ARIMAX Forecast values with confidence intervals

5 Conclusion and Recommendations

This study modeled the trends of prostate cancer incidences in Meru County using ARIMAX models. The
findings indicate a rising trend in incidences, with the ARIMAX model providing the most accurate forecasts
by incorporating external variables such as age. These results underscore the importance of using advanced
statistical models in epidemiological studies to inform public health policies.
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Future research should explore the inclusion of additional exogenous variables in the ARIMAX model, such as
lifestyle factors and genetic predispositions, to further enhance its predictive accuracy. Additionally, similar
studies should be conducted in other counties to develop a comprehensive understanding of prostate cancer
trends across Kenya.
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