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ABSTRACT 
 

Aims: The study aimed to delineate rice accurately (Oryza sativa L.) cultivation areas in the 
Kuttanad region, Kerala, during the Puncha season of 2023-24 using medium- to high-resolution 
optical satellite data, particularly Landsat 8 Operational Land Imager (OLI), to aid in preharvest 
prediction of agricultural production and policy making. 
Study Design: This study used a remote sensing-based approach for rice area estimation, 
focusing on supervised classification methods. 
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Place and Duration of Study: The study was conducted in Kuttanad, Kerala, a low-lying 
agroecosystem, during the Puncha season of 2023-24. 
Methodology: The study utilised two cloud-free Landsat 8 OLI images to delineate rice-growing 
areas. The images were pre-processed, mosaicked, and analysed using ArcGIS software. A 
supervised classification approach was employed using the Maximum Likelihood Classification 
algorithm. The study area was classified into five categories: rice fields, other crops, low vegetation, 
built-up areas, and water bodies. Ground-truth data was used to validate the classification 
accuracy. 
Results: The total rice area delineated during the Puncha season was 43,550.28 hectares. The 
classification achieved an accuracy of 93.33%, with a kappa coefficient of 0.87, indicating high 
reliability. 
Conclusion: The accurate delineation of rice-growing areas using satellite imagery provides 
valuable information for assessing production levels and planning for food security. This 
methodology can aid in agricultural planning and contingency strategies, particularly in regions like 
Kuttanad, which face challenges such as flooding and soil toxicity. 
 

 
Keywords: Optical remote sensing; rice area estimation; Landsat 8 OLI IMAGES; supervised 

classification. 
 

1. INTRODUCTION 
 
Over 50% of the world's population depends 
primarily on rice (Oryza sativa L.), grown on 
around 140 million hectares of land (Khush, 
2005). According to predictions made by Yuan et 
al., (2021), there will be a significant increase in 
the amount of rice consumed worldwide by 2030, 
from 480 million tons of milled rice in 2014. India 
plays a critical role in both national and 
international food security, producing 21% of the 
world's rice (130.29 million tons yearly) from an 
area of 46.38 million hectares (GOI, 2023). The 
Green Revolution was crucial in raising rice yield, 
production, and crop density and expanding rice 
cultivation areas in India to meet the demands of 
a growing population (Matsumura et al., 2009).  
However, challenges such as urbanization, the 
shift to cash crops, and decreasing labour 
availability threaten the preservation of rice 
acreage in India. Kerala witnessed an abrupt 
decrease in the area used for rice cultivation 
from 8.7 lakh hectares in 1970–1971 to 1.96 lakh 
hectares in 2021–2022, which led to a 90% drop 
in output (Agricultural Statistics 2021-22). 
Climate variability, especially changes in 
temperature and rainfall, can affect rice yields 
because rice requires more water than other 
crops (Ahmed and Ahmad, 2017). Thus, 
developing import and export strategies to meet 
production deficits or surpluses requires accurate 
pre-harvest rice yield forecasting based on 
the previous year's vegetation conditions (Huang 
et al., 2002; Nuarsa et al., 2012). 
 
The primary source of information for rice 
mapping in the 1980s and early 1990s was 

regularly updated agricultural statistical data 
(Huke and Huke, 1997). However, recent 
advancements in remote sensing technology 
have provided a reliable alternative for estimating 
large-scale crop acreage (Yang, 2007; Chen, 
2007; Koppe et al., 2013). 
 

Remote sensing offers numerous advantages, 
such as broad spatial coverage, year-round 
availability, and cost-effectiveness due to the 
freely accessible optical images from MODIS, 
IRS LISS-III, Landsat, and Sentinel (Richards & 
Jia, 2006). The availability of contemporary high-
resolution satellite images has significantly 
improved crop yield forecast, crop differentiation, 
crop planting area calculation, and crop growth 
modelling (Bolton and Friedl, 2013; Mondal et al., 
2014; Singha et al., 2019).  Rice mapping has 
successfully made use of satellite data with both 
mono- and multi-temporal inputs. Mono-temporal 
image data can be particularly useful for 
identifying rice fields, as obtaining cloud-free 
images during the rice growing season is often 
challenging. Many researchers have made 
notable contributions to this field.  
 

Recently, several studies have successfully 
mapped rice cultivation areas using phenology-
based algorithms and various multi-temporal 
images, including LANDSAT (Dong et al., 2016; 
Hedayati et al., 2022), IRS LISS-III (Mondal et 
al., 2014), MODIS (Zhang et al., 2017; Jiang et 
al., 2018), Sentinel-1 (Mansaray et al., 2019; 
Shen and Nie, 2023), and Sentinel-2 (Raju et al., 
2022) at both global and regional scales. 
 

Karydas et al. (2015) developed a rule-based 
method for mapping rice cultivation using 
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Landsat 8 time series data for the plains of 
Thessaloniki, Greece. Genc et al. (2014) 
developed land use and land cover maps for 
Biga town after classifying Landsat data into six 
categories to identify paddy fields. Yedage et al. 
(2013) focused on identifying and evaluating 
pomegranate crop zones in Maharashtra using 
IRS P6 and LANDSAT-7 data. Using cloud-free, 
single-date Resourcesat-1 LISS-III digital data 
that coincided with the wheat blossoming stage, 
Goswami et al. (2012) calculated the acreage. 
Three multi-temporal, cloud-free Sentinel-2 
datasets were utilized by Raju et al. (2022) to 
map rice areas in the Palakkad district of Kerala. 
 

While Ajith et al., (2017) estimated the amount of 
rice acreage in Tamil Nadu using Landsat 8 OLI 
data, Persello et al., (2019) used MODIS NDVI 
data to map rice regions in Bangladesh. 
Compared to MODIS imagery, Landsat images 
have a higher geographical and temporal 
resolution (16-day repeat), making them more 
potentially useful for identifying paddy fields 
(Wang et al., 2015). In addition to Landsat 5 and 
7, Landsat 8 pictures provide enhanced precision 
for LULC mapping and assessment (Roy et al., 
2014). Additionally, Landsat 8 provides advances 
in radiometric, spectral, and geographic 
resolution, and daily imagery is possible (Roy et 
al., 2014). 
 

The goal of the study is to assess how well 
medium- to high-resolution optical satellite data, 
particularly the Landsat 8 OLI, can map the 
regions used for rice farming in the Kuttanad 
region of Kerala during the 2023–2024 Puncha 
season. Since the cloud cover is a major 
challenge during rice cultivation season, 
assessing the potential of freely available optical 
satellite images is very important. Studies 
focussing on the delineation of rice area in the 
major rice growing tract of Kuttanad is also 
lacking. Information of areas under rice well in 
advance also helps policymakers to plan 
regarding food grain availability. Hence the study 
is carried out to delineate rice area in Kutanad 
tract. The study hypothesizes that the Landsat 8 
time series can effectively capture rice crops, 
leading to improved resource management and 
food security strategies. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

The study was conducted in the (Fig. 1) Kuttanad 
region of Kerala State, India. Within the districts 
of Alappuzha, Kottayam, and Pathanamthitta, 

rice is grown under the unique Kuttanad system, 
up to three meters below sea level, protected by 
bunds to prevent inundation of water. The area is 
located in the southwest of Kerala, between 
latitudes 70 30’ to 110 15’ North and longitudes 
750 30’ to 770 30’ East. It is bordered on the 
north, east, west, and south by the districts of 
Ernakulam, Kottayam, Alappuzha, and 
Pathanamthitta, respectively. The Kuttanad 
region known as Kerala's rice bowl and accounts 
for a significant portion of the state's rice 
production and receives 2692 mm of rainfall 
annually. Of this total rainfall, the southwest 
monsoon, northeast monsoon, summer rains, 
and winter rains each account for 64.3%, 18.7%, 
15.91%, and 1.1% of the total. As the area is low 
lying most of the paddy fields are under threat of 
flood water inundation during southwest 
monsoon period and cultivation is possible during 
the season only in those areas which have 
sufficient drainage facilities. Therefore, Puncha is 
the primary crop season, with crops sown in 
October and November and harvests taking 
place in February and March. In about one-third 
of the land where adequate infrastructure for 
pumping out excess water and suitable drainage 
facilities are present, an additional crop is also 
harvested during Kharif, which runs from June to 
September. The study was conducted on the 
medium-duration Uma rice variety in the 
Kuttanad region during the Puncha rice season 
of 2023–2024. 
 

2.2 Remote Sensing Data  
 
For this study, a 30 m spatial resolution Level 1 
product of Landsat 8 Operational Land Imager 
(OLI) was used. Since two images were required 
to cover the entire area of Kuttanad, two cloud-
free (< 5%) Geo-TIFF images in one path (No. 
144) and two rows (Nos. 53 and 54) were 
obtained as two tiles from 
https://earthexplorer.usgs.gov/ (Table 1). Fig. 2 
shows the acquired raw satellite imagery. The 
research area's administrative               
boundaries were superimposed on the pictures 
to extract the entire pixel that belonged to the 
region. 
 

2.3 Creating Composite Image from 
Landsat 8 OLI Imagery  

 
Table 2 provides the band designation for 
Landsat 8 OLI. Seven of the eleven bands, each 
with a resolution of 30 m, were combined to 
make the composite image. Clouds, cloud 
shadows, haze, and other noisy data might affect 

https://earthexplorer.usgs.gov/
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individual remote-sensing images. Clearer 
images that are simpler to compare across time 
are produced by composite images, which are 
made by combining many images taken in 
different bands into one. It is possible to display 
images in both true and false color by creating a 
composite image from several bands. When 
bands are displayed in RGB, or True Color 
Composite, images appear more realistic and 
similar to what the human eye would see. It also 
helps us recognize various features in a scene 
and get to know them better, such as identifying 
cities, forests, agricultural land, and water bodies 
(Fig. 3). False Colour Composites (FCC) use a 
colour scheme that helps to identify features like 
vegetation, clouds, urban areas, and open            
water in comparison with True Colour Composite 
and ground truth information. For example, in a 

false colour image, vegetation with high 
photosynthetic activity appears bright red, water 
appears black, and bare ground appears blue or 
white (Fig. 5b). It will be very beneficial to 
compare true and false colors when performing 
various studies, including supervised and 
unsupervised classifications. The Kuttanad 
region was fully covered by mosaicking images 
in row 53 and row 54, two neighbouring 
composite raster datasets (Fig. 4). Combining 
two raster datasets seamlessly into a single 
raster image by mosaicking makes 
categorization simpler. In addition, the mosaic 
composite image was shown in both True Color 
(Bands 4,3,2) and False Color (Bands 5,4,3) to 
facilitate classification. The mosaiked             
images are then clipped to extract the study 
region (Fig. 5a).  

 

 
 

Fig. 1. Location map of Kuttanad Region 
 

Table 1. Landsat 8 OLI images downloaded 
 

Date Path Row Images 

22/01/24 144 53 LC08_L1TP_144053_29240122_20240130_02_T1 
22/01/24 144 54 LC08_L1TP_144054_29240122_20240130_02_T1 

 

Table 2. Various bands under Landsat 8 OLI 
 

Landsat 8 
OLI 

Bands Wavelength (micrometers) Resolution (meters) 

Band 1 - Ultra Blue  0.43 - 0.45  
Band 2 – Blue 0.45 - 0.51 30 
Band 3 - Green 0.53 - 0.59 30 
Band 4 - Red 0.64 - 0.67 30 
Band 5 - Near Infrared 
(NIR) 

0.85 - 0.88 30 

Band 6 - Shortwave 1 1.57 - 1.65 30 

INDIA 

KUTTANAD 

KERALA 
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Landsat 8 
OLI 

Bands Wavelength (micrometers) Resolution (meters) 

Infrared (SWIR) 

Band 7 - Shortwave 
Infrared (SWIR) 

2 2.11 - 2.29 30 

 

2.4 Maximum Likelihood Classification 
and Rice Area Estimation  

 
The supervised classification technique was 
applied using Maximum Likelihood Classification 
(MLC) provision in ArcGIS10.3 software. 
Supervised classification is the practicability 
utilized for quantitative remotely sensed images 
analysis; it depends on using the proper 
algorithms to label the image pixels as 
representing specific classes, or specific land 
cover types (John and Xiuping, 2006; Miranda, et 
al., 2018). Maximum likelihood classification 
(MLC) considers being one of the most widely 
used supervised classifications in various 
applications (Erbek, et al., 2004; Muhsin and 
Kadhim, 2017). A total of 30 rice and 30 non-rice 
areas were identified in the study area by ground 
truthing. The spectral signatures were created 
from these training sites by identifying similar 
areas and based on this the image was   
classified in ArcGIS Software. Land use mask 
available in the Department of Agricultural 
Meteorology, RARS, Kumarakom was used for 
masking the classes with less interest. For this 
study, a supervised classification method which 
consisting of five classes such as paddy areas, 
other              vegetation, low vegetation, built-up 
areas, and water bodies was found to be 
appropriate (Fig. 6a). The rice area was 
delineated by removing the classes like built-up 
areas, low vegetation, other vegetation, and 
water bodies (Fig. 6b). When a few classes are 
needed for analysis, supervised classification is 
employed. For the analyst to construct an 
appropriate signature from the image for 
classification. it is also necessary to have some 
prior knowledge of pixels in order to represent 
classes that you wish to extract from the image. 
Information regarding the land cover in the 
training sites was obtained by field visits and 
ground truthing.  
 

3. RESULTS AND DISCUSSION 
 
Maps illustrating the land use patterns in Kerala's 
Kuttanad region were created with five distinct 
classes, as depicted in Fig. 6a. Fig. 6b presents 
the rice area map developed for Kuttanad and 
the estimated rice area is 43,550.28 ha. The 

areas of other classes were estimated as follows: 
other vegetation (22,989.22 ha), low vegetation 
(12,812.26 ha), urban areas or built-up structures 
(57,185.35 ha), water bodies (10,157.02 ha). The 
classification of Kuttanad region is summarized 
in Table 3.  The overall rice area evaluated 
throughout the five blocks (43,550.28 ha),is 
marginally more than the actual acreage 
recorded in the Farm Guide (2023–24) for the 
Puncha season in 2021–22, which is 41,496.33 
ha. By identifying between the rice and non-rice 
sectors, it was confirmed that the rice region 
comprised 29.7% of the research area. To 
enhance accuracy, the remaining classifications 
without rice cultivation were grouped into a single 
category representing non-rice areas.  

 
Fig. 6b. shows the 60 validation points distributed 
throughout the Kuttanad region, with 30 points 
for rice and 30 for non-rice. The Regions of 
Interest (ROIs) created using high-resolution 
Google Earth pictures and ground-truth data 
were compared to the rice area classification 
map. The findings indicate that there is a very 
high degree of agreement between the field data 
and the categorization map for rice.  Using data 
from rice and non-rice areas, the classes that 
were defined and the actual land coverage were 
compared to create a confusion matrix and 
kappa coefficient that were used to assess 
accuracy. The accuracy of classification is 
summarized in Table 4. With a kappa coefficient 
of 0.87, the classification attained an average 
accuracy of 93.33%. 

 
Several researchers have attempted area 
delineation in rice based on various optical 
satellite products the obstructions rendered 
Zhang et al. (2023) used Google Earth Engine 
(GEE) and Landsat images from 1990 to 2020 to 
create a Phenology-assisted Supervised Paddy 
Rice (PSPR) mapping framework in Heilongjiang 
Province, China, with a high degree of accuracy 
(R2 = 0.993). Zhao et al. in 2021 obtained high-
resolution multi-temporal vegetation indicators 
(NDVI, LSWI) and mapped paddy rice with an 
overall accuracy of 93% by combining Sentinel-2 
and MODIS data. The difficulties caused by 
cloud cover in southwest China were 
successfully resolved by this technique.  
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Fig. 2. Landsat 8 OLI images of the study area (a. Path 144, Row 53 & b. Path 144, Row 54) 
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. 
 

Fig. 3. True Colour Composite in RGB in rows 53 (3a) and 54 (3b) 
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Fig. 4. Mosaiked composite image (4a) and study area overlaid on composite image (4b) 

b) 
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Fig. 5. The clipped study area in True Colour Composite (5a) and False Colour Composite (5b) 
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Fig. 6. Classified image with 5 classes (6a) and rice area delineated with rice and non rice points (6b) 
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Table 3. Classification of the Kuttanad Region 
 

Classes Area (ha) 

Rice 43,550.28 
Other vegetation 22,989.22 
Low vegetation 12,812.26 
Urban areas or built-up structures 57,185.35 
Water bodies 10,157.02 

 
Table 4. Confusion matrix for accuracy assessment of rice classification 

 

 Predicted class from the map 

 Class   Rice  Non-rice  Accuracy  

 Rice 28 2 93.33 
 Non rice 2 28 93.33 
 Reliability 93.33% 93.33%  
Average accuracy 93.33%   
Average reliability 93.33%   
Kappa coefficient 0.87   

 
Cao et al. (2021) mapped double- and single-
cropping rice in Southern China using Landsat 
time series data and a decision tree algorithm 
based on the Enhanced Vegetation Index (EVI). 
With accuracy ranging from 82% to 93%, they 
discovered that cloud-free photos taken during 
crucial growing seasons produced the most 
accurate results. An object-based approach 
combining merged MODIS and Landsat data 
coupled with phenological information was 
presented by Zhang and Lin (2019). Their 
technique worked well for mapping rice in cloudy 
areas, with an accuracy of 92.38%. These 
studies show that the supervised and object-
based classification methods were quite 
successful at capturing the spatial heterogeneity 
of rice fields in areas that frequently experience 
cloud cover.  
 
Using Sentinel-2 data, Raju et al. (2022) 
calculated the rice production areas in Kerala's 
Palakkad district and observed comparable 
results, with an average accuracy of 85% and a 
kappa coefficient of 0.72. Ajith et al. (2017) used 
Landsat 8 OLI images to study rice regions in the 
Thanjavur district of Tamil Nadu, and they found 
similar results with an accuracy of 87% and a 
kappa coefficient of 0.74. In another study, 
Kontgis et al., (2015) looked into the mapping of 
rice paddies in Vietnam's Mekong River Delta, 
utilizing dense time series data from Landsat. 
Their approach achieved an impressive accuracy 
rate of over 90%, with omission and commission 
errors ranging from 6% to 25%. The research 
effectively differentiated between single, double, 
and triple-cropped rice paddies through a 
supervised classification that relied on various 

cropping pattern examples. Raza et al., (2018) 
took advantage of Landsat 8 data and GIS 
technology to find appropriate sites for rice 
production in Pakistan's Punjab province. 
According to their research, 24.85% of the 
existing cultivated land was considered 
unsuitable and 6.8% of the area was rated as 
least suitable, both of which ultimately 
contributed to reduced production. Sethi et al. 
(2014) also determined the acreage of rice in 
Haryana using Landsat ETM+ data with 
ISODATA unsupervised classification. This study 
demonstrates how crop covering variability and 
planted area mapping might affect regional 
projections of water demand and production. The 
Virippu and Mundakan seasons in Kerala 
correspond to the southwest and northeast 
monsoons, respectively. In comparison to the 
Mundakan and Puncha seasons, the Virippu 
season has more cloud cover in satellite imagery 
due to the southwest monsoon's influence. 
Utilizing optical remote sensing to map rice lands 
is made possible by the Puncha season, which 
does not coincide with the monsoon and offers 
more cloud-free images. With supervised 
classification, rice areas were mapped and 
landforms were distinguished with high accuracy 
using Landsat 8 OLI pictures.  
 
This study uses digital supervised classification 
based on FCC from Landsat 8 OLI Bands 1 to 7 
to identify land cover, other agricultural forms, 
and existing rice crops during the Puncha 
season. Acreage estimation using optical satellite 
images is often complicated by cloud cover, so 
mono-temporal images with minimal cloud 
interference were utilized for this study. This 
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study depicts the potential of using mono-
temporal optical satellite images for accurate 
classification of rice area in Kuttanad, Kerala. 
 

4. CONCLUSION 
 

The objective of this research was to apply 
supervised classification to a total of two 
datasets from Landsat 8 OLI to ascertain the test 
site's area under rice cultivation and assess the 
method's accuracy.  The method produced a 
classification accuracy of 93.33%. In the 
Kuttanad region, the Puncha season does not 
coincide with the monsoon season, resulting in a 
lower likelihood of cloud interference for optical 
images. However, it is essential to ensure that 
we have cloud-free temporal images for 
accurately delineating rice areas. Rice areas in 
the reproductive phase of Uma rice are 
specifically looked for for identification, as this is 
the period when optical satellite images free of 
clouds are most likely to be obtained. The goal of 
this demonstration is to show that Landsat 8 OLI 
mono-temporal optical datasets offer good 
overall accuracy for classifying land cover. To 
ensure food security, it is essential to understand 
the rice area around a month or two before 
harvesting. 
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